Isolated attosecond electron wave packet diffraction

Wave-particle duality is one of the most fundamental and mysterious natures of matters. Here, we present an interesting scheme of isolated electron wave packet diffraction with a few-cycle laser pulse and an extreme ultraviolet (XUV) pulse. The diffraction fringes are clearly present in the laser dr...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 20; no. 8; pp. 176 - 180
Main Authors Yu, Ben-Hai, Zhang, Dong-Ling, Tang, Qing-Bin
Format Journal Article
LanguageEnglish
Published 01.08.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Wave-particle duality is one of the most fundamental and mysterious natures of matters. Here, we present an interesting scheme of isolated electron wave packet diffraction with a few-cycle laser pulse and an extreme ultraviolet (XUV) pulse. The diffraction fringes are clearly present in the laser dressed XUV photoelectron spectra, strongly resembling the Airy diffraction pattern of optical waves. This phenomenon suggests a great potential of attosecond diffractometry. According to this scheme we also propose a simple method to determine the XUV pulse duration from the photoelectron spectra with a rather high resolution.
Bibliography:Wave-particle duality is one of the most fundamental and mysterious natures of matters. Here, we present an interesting scheme of isolated electron wave packet diffraction with a few-cycle laser pulse and an extreme ultraviolet (XUV) pulse. The diffraction fringes are clearly present in the laser dressed XUV photoelectron spectra, strongly resembling the Airy diffraction pattern of optical waves. This phenomenon suggests a great potential of attosecond diffractometry. According to this scheme we also propose a simple method to determine the XUV pulse duration from the photoelectron spectra with a rather high resolution.
11-5639/O4
electron wave packet diffraction, extreme ultraviolet pulse, attosecond diffractometry
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/20/8/083201