Density-Based Multifeature Background Subtraction with Support Vector Machine
Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentati...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 34; no. 5; pp. 1017 - 1023 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Los Alamitos, CA
IEEE
01.05.2012
IEEE Computer Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentation algorithms for this problem. We propose a pixelwise background modeling and subtraction technique using multiple features, where generative and discriminative techniques are combined for classification. In our algorithm, color, gradient, and Haar-like features are integrated to handle spatio-temporal variations for each pixel. A pixelwise generative background model is obtained for each feature efficiently and effectively by Kernel Density Approximation (KDA). Background subtraction is performed in a discriminative manner using a Support Vector Machine (SVM) over background likelihood vectors for a set of features. The proposed algorithm is robust to shadow, illumination changes, spatial variations of background. We compare the performance of the algorithm with other density-based methods using several different feature combinations and modeling techniques, both quantitatively and qualitatively. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0162-8828 1939-3539 2160-9292 |
DOI: | 10.1109/TPAMI.2011.243 |