Density-Based Multifeature Background Subtraction with Support Vector Machine

Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentati...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 34; no. 5; pp. 1017 - 1023
Main Authors Bohyung Han, Davis, L. S.
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.05.2012
IEEE Computer Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentation algorithms for this problem. We propose a pixelwise background modeling and subtraction technique using multiple features, where generative and discriminative techniques are combined for classification. In our algorithm, color, gradient, and Haar-like features are integrated to handle spatio-temporal variations for each pixel. A pixelwise generative background model is obtained for each feature efficiently and effectively by Kernel Density Approximation (KDA). Background subtraction is performed in a discriminative manner using a Support Vector Machine (SVM) over background likelihood vectors for a set of features. The proposed algorithm is robust to shadow, illumination changes, spatial variations of background. We compare the performance of the algorithm with other density-based methods using several different feature combinations and modeling techniques, both quantitatively and qualitatively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2011.243