Hole-Selective Front Contact Stack Enabling 24.1%-Efficient Silicon Heterojunction Solar Cells
The window-layer stack limits the efficiency of both-side-contacted silicon heterojunction solar cells. We discuss here the combination of several modifications to this stack to improve its optoelectronic performance. These include the introduction of a nanocrystalline silicon-oxide p-type layer in...
Saved in:
Published in | IEEE journal of photovoltaics Vol. 11; no. 1; pp. 9 - 15 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The window-layer stack limits the efficiency of both-side-contacted silicon heterojunction solar cells. We discuss here the combination of several modifications to this stack to improve its optoelectronic performance. These include the introduction of a nanocrystalline silicon-oxide p-type layer in lieu of the amorphous silicon p-type layer, replacing indium tin oxide with a zirconium-doped indium oxide for the front transparent electrode, capping this layer with a silicon-oxide film and applying a postfabrication electrical biasing treatment. The influence of each of these alterations is discussed as well as their interactions. Combining all of them finally enables the fabrication of a highly transparent and electrically well-performing window-layer stack, leading to a screen-printed silicon heterojunction solar cell with 24.1% efficiency. Paths toward industrialization and further improvements are finally discussed. |
---|---|
ISSN: | 2156-3381 2156-3403 |
DOI: | 10.1109/JPHOTOV.2020.3028262 |