A Cell‐Culture Technique to Encode Glyco‐Nanoparticles Selectivity
Nanoparticles (NPs) embedded with bioactive ligands such as carbohydrates, peptides, and nucleic acid have emerged as a potential tool to target biological processes. Traditional in vitro assays performed under statistic conditions may result in non‐specific outcome sometimes, mainly because of the...
Saved in:
Published in | Chemistry, an Asian journal Vol. 16; no. 23; pp. 3900 - 3904 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nanoparticles (NPs) embedded with bioactive ligands such as carbohydrates, peptides, and nucleic acid have emerged as a potential tool to target biological processes. Traditional in vitro assays performed under statistic conditions may result in non‐specific outcome sometimes, mainly because of the sedimentation and self‐assembly nature of NPs. Inverted cell‐culture assay allows for flexible and accurate detection of the receptor‐mediated uptake and cytotoxicity of NPs. By combining this technique with glyco‐gold nanoparticles, cellular internalization and cytotoxicity were investigated. Regioselective glycosylation patterns and shapes of the NPs could tune the receptors′ binding affinity, resulting in precise cellular uptake of gold nanoparticles (AuNPs). Two cell lines HepG2 and HeLa were probed with galactosamine‐embedded fluorescent AuNPs, revealing significant differences in cytotoxicity and uptake mechanism in upright and invert in vitro cell‐culture assay, high‐specificity toward uptake, and allowing for a rapid screening and optimization technique.
Here, we showed that the inverted cell culture method could rapidly improve our knowledge of cell specificity and cytotoxicity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1861-4728 1861-471X |
DOI: | 10.1002/asia.202101015 |