Nanocellulose Films from Amazon Forest Wood Wastes: Structural and Thermal Properties
The aim of this work was to determine the best fibrillation intensity that should be used to produce high crystalline and thermal stable microfibrillated cellulose (MFC) and nanocellulose films from C. goeldiana veneer wastes. The number of passages (cycles) of cellulose suspension tested in grinder...
Saved in:
Published in | Key Engineering Materials Vol. 668; pp. 110 - 117 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Zurich
Trans Tech Publications Ltd
01.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The aim of this work was to determine the best fibrillation intensity that should be used to produce high crystalline and thermal stable microfibrillated cellulose (MFC) and nanocellulose films from C. goeldiana veneer wastes. The number of passages (cycles) of cellulose suspension tested in grinder were 10, 20, 30 and 40. Important properties to be analyzed included changes in morphology from the raw wood to the nanocellulose films, increases/decreases in cellulose crystalline index for inference on biomaterial strength, and thermal behavior changes to support conclusions on biomaterials processing and application possibilities. After chemical treatments for cellulose isolation, mechanical shearing was applied to produce cellulose nanostructures; hence nanocellulose films could be successfully produced from C. goeldiana wood wastes. Influence of more refining cycles on thermal properties, indicated higher stability for 40-cycles nanocellulose films. In general, grinder refining process decreased crystalline index of cellulose. |
---|---|
Bibliography: | Selected, peer reviewed papers from the 15th International Conference on Non-Conventional Materials and Technologies NOCMAT, November 23-25, 2014, Pirassununga, Brazil ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISBN: | 9783038356103 3038356107 |
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.668.110 |