Metal oxide resistive memory with a deterministic conduction path
Resistive random access memories (RRAMs) with minimal power dissipation, high speed, and matrix-vector multiplication capability are potentially ideal for data-centric applications such as neuromorphic computing. However, RRAMs still suffer from instability caused by uncontrolled filament growth and...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 8; no. 11; pp. 3897 - 393 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
21.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Resistive random access memories (RRAMs) with minimal power dissipation, high speed, and matrix-vector multiplication capability are potentially ideal for data-centric applications such as neuromorphic computing. However, RRAMs still suffer from instability caused by uncontrolled filament growth and random oxygen vacancy distribution. In this study, a Ge-Sb-Te ternary chalcogenide layer that functions as a conductive lead is added to a HfO
2
-based RRAM layer to confine the subsequent filament formation to the initially determined site. Based on the DC and pulse measurement data, this technique is confirmed to improve the memory switching reproducibility without compromising its endurance and retention. Such deterministic behavior will be important in improving the sensing margin and multi-level capability of RRAM technology as the switching characteristics become more unstable with extreme device scaling.
In this study, a Ge-Sb-Te ternary chalcogenide layer that functions as a conductive lead is added to a HfO
2
-based RRAM layer to improve the memory switching reproducibility and reduce HRS/LRS variations. |
---|---|
AbstractList | Resistive random access memories (RRAMs) with minimal power dissipation, high speed, and matrix-vector multiplication capability are potentially ideal for data-centric applications such as neuromorphic computing. However, RRAMs still suffer from instability caused by uncontrolled filament growth and random oxygen vacancy distribution. In this study, a Ge-Sb-Te ternary chalcogenide layer that functions as a conductive lead is added to a HfO
2
-based RRAM layer to confine the subsequent filament formation to the initially determined site. Based on the DC and pulse measurement data, this technique is confirmed to improve the memory switching reproducibility without compromising its endurance and retention. Such deterministic behavior will be important in improving the sensing margin and multi-level capability of RRAM technology as the switching characteristics become more unstable with extreme device scaling.
In this study, a Ge-Sb-Te ternary chalcogenide layer that functions as a conductive lead is added to a HfO
2
-based RRAM layer to improve the memory switching reproducibility and reduce HRS/LRS variations. Resistive random access memories (RRAMs) with minimal power dissipation, high speed, and matrix-vector multiplication capability are potentially ideal for data-centric applications such as neuromorphic computing. However, RRAMs still suffer from instability caused by uncontrolled filament growth and random oxygen vacancy distribution. In this study, a Ge–Sb–Te ternary chalcogenide layer that functions as a conductive lead is added to a HfO2-based RRAM layer to confine the subsequent filament formation to the initially determined site. Based on the DC and pulse measurement data, this technique is confirmed to improve the memory switching reproducibility without compromising its endurance and retention. Such deterministic behavior will be important in improving the sensing margin and multi-level capability of RRAM technology as the switching characteristics become more unstable with extreme device scaling. Resistive random access memories (RRAMs) with minimal power dissipation, high speed, and matrix-vector multiplication capability are potentially ideal for data-centric applications such as neuromorphic computing. However, RRAMs still suffer from instability caused by uncontrolled filament growth and random oxygen vacancy distribution. In this study, a Ge–Sb–Te ternary chalcogenide layer that functions as a conductive lead is added to a HfO 2 -based RRAM layer to confine the subsequent filament formation to the initially determined site. Based on the DC and pulse measurement data, this technique is confirmed to improve the memory switching reproducibility without compromising its endurance and retention. Such deterministic behavior will be important in improving the sensing margin and multi-level capability of RRAM technology as the switching characteristics become more unstable with extreme device scaling. |
Author | Lim, Jinho Alimkhanuly, Batyrbek Lee, Sunghwan Seo, Shem Kadyrov, Arman Jeon, Dasom Lee, Seunghyun |
AuthorAffiliation | Department of Electronic Engineering Kyunghee University |
AuthorAffiliation_xml | – name: Department of Electronic Engineering – name: Kyunghee University |
Author_xml | – sequence: 1 givenname: Sunghwan surname: Lee fullname: Lee, Sunghwan – sequence: 2 givenname: Shem surname: Seo fullname: Seo, Shem – sequence: 3 givenname: Jinho surname: Lim fullname: Lim, Jinho – sequence: 4 givenname: Dasom surname: Jeon fullname: Jeon, Dasom – sequence: 5 givenname: Batyrbek surname: Alimkhanuly fullname: Alimkhanuly, Batyrbek – sequence: 6 givenname: Arman surname: Kadyrov fullname: Kadyrov, Arman – sequence: 7 givenname: Seunghyun surname: Lee fullname: Lee, Seunghyun |
BookMark | eNp9kM1LAzEQxYNUsNZevAsRb8JqNtnNJsey-EnFS-9LNjuhKd3NmqRq_3u3VhREnMsMvN-bGd4xGnWuA4ROU3KVEiavtYyaFISkqwM0piQnSZGzbPQ9U36EpiGsyFAi5YLLMZo9QVRr7N5tA9hDsCHaV8AttM5v8ZuNS6xwAxF8a7udqLF2XbPR0boO9youT9ChUesA068-QYvbm0V5n8yf7x7K2TzRLMtiYlQhtdCMGC41o01WpIyrlJgcwNQgFCUaeKYk5EVNlKCUSCG0rHUtqFFsgi72a3vvXjYQYrVyG98NFyvKCiFymjM-UGRPae9C8GAqbaPa_Rq9susqJdUuqqqUi_IzqsfBcvnL0nvbKr_9Gz7bwz7ob-4n90E__0-v-sawD9ECgNU |
CitedBy_id | crossref_primary_10_1002_admi_202100664 crossref_primary_10_1016_j_mssp_2023_107346 crossref_primary_10_1021_acs_jpclett_1c02815 crossref_primary_10_1002_pssb_202400081 crossref_primary_10_1088_1402_4896_ac97cd crossref_primary_10_1002_advs_202105577 crossref_primary_10_1002_aelm_202100997 crossref_primary_10_1002_smll_202310943 crossref_primary_10_1016_j_mtla_2021_101277 crossref_primary_10_1063_5_0237063 |
Cites_doi | 10.1149/2.0121512ssl 10.1063/1.2945278 10.1063/1.2828864 10.1063/1.3700730 10.1063/1.3276272 10.1063/1.2798242 10.1063/1.5098382 10.1063/1.3364130 10.1002/adma.200702081 10.1021/cr900040x 10.1116/1.3301579 10.1038/nmat2023 10.1109/JPROC.2012.2190369 10.1038/s41598-016-0001-8 10.1038/ncomms9407 10.1016/j.mser.2014.06.002 10.1016/j.mejo.2006.09.012 10.1063/1.3442499 10.3390/mi10100663 10.1109/LED.2010.2055534 10.1109/TED.2017.2746342 10.1109/JPROC.2015.2433311 10.1016/j.mejo.2016.11.006 10.1038/s41563-017-0001-5 10.1021/nn503713f 10.1063/1.3122344 10.1021/acsami.9b11721 10.1021/acsami.7b19586 10.1103/PhysRevB.81.193202 10.1109/LED.2004.831219 10.1103/PhysRevLett.21.1450 10.1002/adma.200900375 10.1063/1.2720747 10.1109/JEDS.2018.2843162 10.1109/LED.2011.2147274 10.1038/nnano.2015.29 10.1021/nl304246d |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1039/c9tc07001j |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 393 |
ExternalDocumentID | 10_1039_C9TC07001J c9tc07001j |
GroupedDBID | 0-7 0R 4.4 705 AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- GNO HZ H~N J3I JG O-G O9- R7C RCNCU RIG RNS RPMJG RRC RSCEA SKA SKF SLH UCJ 0R~ AAJAE AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c344t-fa79c8c30f69c32d47136a10f5eefbe8a20ce64a9e57b0a8220988c9bcb82fa3 |
ISSN | 2050-7526 |
IngestDate | Mon Jun 30 04:06:31 EDT 2025 Tue Jul 01 04:26:14 EDT 2025 Thu Apr 24 22:49:10 EDT 2025 Wed Nov 11 00:36:15 EST 2020 Sat Jan 08 03:39:24 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c344t-fa79c8c30f69c32d47136a10f5eefbe8a20ce64a9e57b0a8220988c9bcb82fa3 |
Notes | 10.1039/c9tc07001j Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4701-2856 |
PQID | 2378852536 |
PQPubID | 2047521 |
PageCount | 7 |
ParticipantIDs | rsc_primary_c9tc07001j crossref_citationtrail_10_1039_C9TC07001J proquest_journals_2378852536 crossref_primary_10_1039_C9TC07001J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-21 |
PublicationDateYYYYMMDD | 2020-03-21 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | 17.3.4 Gao (C9TC07001J-(cit9)/*[position()=1]) 2018; 10 Tian (C9TC07001J-(cit35)/*[position()=1]) 2013; 13 Yang (C9TC07001J-(cit19)/*[position()=1]) 2014; 5 Zhang (C9TC07001J-(cit7)/*[position()=1]) 2010; 96 Ogimoto (C9TC07001J-(cit17)/*[position()=1]) 2007; 90 Sun (C9TC07001J-(cit33)/*[position()=1]) 2019; 114 Chen (C9TC07001J-(cit50)/*[position()=1]) 2008; 92 Baek (C9TC07001J-(cit47)/*[position()=1]) 2004 Jeyasingh (C9TC07001J-(cit25)/*[position()=1]) 2015 Hamoumou (C9TC07001J-(cit16)/*[position()=1]) 2016; 6 Campbell (C9TC07001J-(cit10)/*[position()=1]) 2017; 59 Campbell (C9TC07001J-(cit13)/*[position()=1]) 2007; 38 Seo (C9TC07001J-(cit15)/*[position()=1]) 2019; 11 Kozicki (C9TC07001J-(cit20)/*[position()=1]) Sun (C9TC07001J-(cit45)/*[position()=1]) 2017; 3 Fujimoto (C9TC07001J-(cit39)/*[position()=1]) 2006; 89 Kund (C9TC07001J-(cit21)/*[position()=1]) 2005 Lee (C9TC07001J-(cit4)/*[position()=1]) 2015; 6 Pan (C9TC07001J-(cit8)/*[position()=1]) 2014; 83 Raoux (C9TC07001J-(cit24)/*[position()=1]) 2010; 110 Lee (C9TC07001J-(cit48)/*[position()=1]) 2008 Wong (C9TC07001J-(cit2)/*[position()=1]) 2012; 100 Yu (C9TC07001J-(cit6)/*[position()=1]) Xu (C9TC07001J-(cit37)/*[position()=1]) 2015; 4 Gao (C9TC07001J-(cit34)/*[position()=1]) 2008 Burr (C9TC07001J-(cit28)/*[position()=1]) 2005; 28 Wong (C9TC07001J-(cit1)/*[position()=1]) 2015; 10 Ahn (C9TC07001J-(cit49)/*[position()=1]) 2008; 20 Lee (C9TC07001J-(cit41)/*[position()=1]) 2010; 81 Campbell (C9TC07001J-(cit11)/*[position()=1]) 2019 Drake (C9TC07001J-(cit12)/*[position()=1]) 2019; 10 Waser (C9TC07001J-(cit3)/*[position()=1]) 2007; 6 Pandian (C9TC07001J-(cit43)/*[position()=1]) 2009; 95 Waser (C9TC07001J-(cit5)/*[position()=1]) 2009; 37 Lee (C9TC07001J-(cit31)/*[position()=1]) 2012; 100 Lai (C9TC07001J-(cit26)/*[position()=1]) 2003 Shin (C9TC07001J-(cit46)/*[position()=1]) 2011; 32 You (C9TC07001J-(cit32)/*[position()=1]) 2014; 8 Lv (C9TC07001J-(cit30)/*[position()=1]) 2010; 31 Lacaita (C9TC07001J-(cit42)/*[position()=1]) 2004; 25 Kwak (C9TC07001J-(cit40)/*[position()=1]) 2010; 96 Ovshinsky (C9TC07001J-(cit22)/*[position()=1]) 1968; 21 Pandian (C9TC07001J-(cit44)/*[position()=1]) 2007; 91 Tao (C9TC07001J-(cit14)/*[position()=1]) 2018; 6 Fong (C9TC07001J-(cit29)/*[position()=1]) 2017; 64 Tsetseris (C9TC07001J-(cit36)/*[position()=1]) 2009; 94 Wouters (C9TC07001J-(cit27)/*[position()=1]) 2015; 103 Xu (C9TC07001J-(cit38)/*[position()=1]) 2008; 92 Gill (C9TC07001J-(cit23)/*[position()=1]) Choi (C9TC07001J-(cit18)/*[position()=1]) 2018; 17 |
References_xml | – year: 17.3.4 end-page: 17.3.1 doi: Yu Guan Wong – doi: Gill Lowrey Park – doi: Kozicki Gopalan Balakrishnan Park Mitkova – issn: 2019 end-page: p 815-842 publication-title: Handbook of Memristor Networks doi: Campbell – issn: 2015 end-page: p 78-109 publication-title: Emerging Nanoelectronic Devices doi: Jeyasingh Ahn Burc Eryilmaz Fong Philip Wong – start-page: 1 year: 2008 ident: C9TC07001J-(cit34)/*[position()=1] publication-title: IEDM Tech. Dig. – volume: 4 start-page: P105 year: 2015 ident: C9TC07001J-(cit37)/*[position()=1] publication-title: ECS Solid State Lett. doi: 10.1149/2.0121512ssl – volume: 92 start-page: 232112 year: 2008 ident: C9TC07001J-(cit38)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2945278 – volume: 92 start-page: 013503 year: 2008 ident: C9TC07001J-(cit50)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2828864 – volume: 100 start-page: 142106 year: 2012 ident: C9TC07001J-(cit31)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3700730 – volume: 95 start-page: 3 year: 2009 ident: C9TC07001J-(cit43)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3276272 – volume: 91 start-page: 152103 year: 2007 ident: C9TC07001J-(cit44)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2798242 – volume: 3 start-page: 1 year: 2017 ident: C9TC07001J-(cit45)/*[position()=1] publication-title: Adv. Electron. Mater. – volume: 114 start-page: 193502 year: 2019 ident: C9TC07001J-(cit33)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.5098382 – volume: 96 start-page: 123502 year: 2010 ident: C9TC07001J-(cit7)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3364130 – volume: 20 start-page: 924 year: 2008 ident: C9TC07001J-(cit49)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200702081 – start-page: 587 year: 2004 ident: C9TC07001J-(cit47)/*[position()=1] publication-title: IEDM Tech. Dig. – volume: 5 start-page: 1 year: 2014 ident: C9TC07001J-(cit19)/*[position()=1] publication-title: Nat. Commun. – volume: 110 start-page: 240 year: 2010 ident: C9TC07001J-(cit24)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr900040x – volume: 28 start-page: 223 year: 2005 ident: C9TC07001J-(cit28)/*[position()=1] publication-title: J. Vac. Sci. Technol., B doi: 10.1116/1.3301579 – start-page: 255 year: 2003 ident: C9TC07001J-(cit26)/*[position()=1] publication-title: IEEE Int. Electron Devices Meet. – volume: 6 start-page: 833 year: 2007 ident: C9TC07001J-(cit3)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2023 – volume: 100 start-page: 1951 year: 2012 ident: C9TC07001J-(cit2)/*[position()=1] publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2190369 – volume: 6 start-page: 1 year: 2016 ident: C9TC07001J-(cit16)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-016-0001-8 – volume: 6 start-page: 8407 year: 2015 ident: C9TC07001J-(cit4)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms9407 – volume: 83 start-page: 1 year: 2014 ident: C9TC07001J-(cit8)/*[position()=1] publication-title: Mater. Sci. Eng., R doi: 10.1016/j.mser.2014.06.002 – volume-title: Emerging Nanoelectronic Devices year: 2015 ident: C9TC07001J-(cit25)/*[position()=1] – volume: 38 start-page: 52 year: 2007 ident: C9TC07001J-(cit13)/*[position()=1] publication-title: Microelectron. J. doi: 10.1016/j.mejo.2006.09.012 – volume: 96 start-page: 223502 year: 2010 ident: C9TC07001J-(cit40)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3442499 – volume: 10 start-page: 663 year: 2019 ident: C9TC07001J-(cit12)/*[position()=1] publication-title: Micromachines doi: 10.3390/mi10100663 – volume: 31 start-page: 978 year: 2010 ident: C9TC07001J-(cit30)/*[position()=1] publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2010.2055534 – volume: 64 start-page: 4374 year: 2017 ident: C9TC07001J-(cit29)/*[position()=1] publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2017.2746342 – start-page: 3 year: 2008 ident: C9TC07001J-(cit48)/*[position()=1] publication-title: IEDM Tech. Dig. – ident: C9TC07001J-(cit23)/*[position()=1] – volume: 103 start-page: 1274 year: 2015 ident: C9TC07001J-(cit27)/*[position()=1] publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2433311 – volume: 59 start-page: 10 year: 2017 ident: C9TC07001J-(cit10)/*[position()=1] publication-title: Microelectron. J. doi: 10.1016/j.mejo.2016.11.006 – volume: 17 start-page: 335 year: 2018 ident: C9TC07001J-(cit18)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/s41563-017-0001-5 – volume: 89 start-page: 17 year: 2006 ident: C9TC07001J-(cit39)/*[position()=1] publication-title: Appl. Phys. Lett. – volume: 8 start-page: 9492 year: 2014 ident: C9TC07001J-(cit32)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn503713f – start-page: 17.3.1 ident: C9TC07001J-(cit6)/*[position()=1] – volume: 94 start-page: 161903 year: 2009 ident: C9TC07001J-(cit36)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3122344 – volume: 11 start-page: 43466 year: 2019 ident: C9TC07001J-(cit15)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11721 – volume-title: Handbook of Memristor Networks year: 2019 ident: C9TC07001J-(cit11)/*[position()=1] – volume: 10 start-page: 6453 year: 2018 ident: C9TC07001J-(cit9)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19586 – volume: 81 start-page: 193202 year: 2010 ident: C9TC07001J-(cit41)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.193202 – volume: 25 start-page: 507 year: 2004 ident: C9TC07001J-(cit42)/*[position()=1] publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2004.831219 – volume: 21 start-page: 1450 year: 1968 ident: C9TC07001J-(cit22)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.21.1450 – volume: 37 start-page: 2632 year: 2009 ident: C9TC07001J-(cit5)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200900375 – volume: 90 start-page: 143515 year: 2007 ident: C9TC07001J-(cit17)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2720747 – ident: C9TC07001J-(cit20)/*[position()=1] – start-page: 754 year: 2005 ident: C9TC07001J-(cit21)/*[position()=1] publication-title: IEDM Tech. Dig. – volume: 6 start-page: 714 year: 2018 ident: C9TC07001J-(cit14)/*[position()=1] publication-title: IEEE J. Electron Devices Soc. doi: 10.1109/JEDS.2018.2843162 – volume: 32 start-page: 958 year: 2011 ident: C9TC07001J-(cit46)/*[position()=1] publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2011.2147274 – volume: 10 start-page: 191 year: 2015 ident: C9TC07001J-(cit1)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.29 – volume: 13 start-page: 651 year: 2013 ident: C9TC07001J-(cit35)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl304246d |
SSID | ssj0000816869 |
Score | 2.30158 |
Snippet | Resistive random access memories (RRAMs) with minimal power dissipation, high speed, and matrix-vector multiplication capability are potentially ideal for... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3897 |
SubjectTerms | Antimony Hafnium oxide Mathematical analysis Matrix algebra Matrix methods Metal oxides Multiplication Random access memory Switching Tellurium |
Title | Metal oxide resistive memory with a deterministic conduction path |
URI | https://www.proquest.com/docview/2378852536 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6TkjwgGAw0TGQJXhBVYYXx4n9WJVOo-rGQzNpb5HjOOoQtNWacfsn_FuOL7kMCgJeosh2HMvni3188p1zEHpZUMmSiOdBxIQKogiOO1zHCrAsSlZCHVPGOfnsPD69iKaX7LLX-95hLd1U-ZH6ttWv5H-kCmUgV-Ml-w-SbTqFArgH-cIVJAzXv5LxmTaujKsvV4VJfrIxn-snPfxoyLNfvdfasPB8FxuQ2ZDMCxcv1kRUXfxGNQUt1g1_qOp8cEfDsXPtqWsMPXG1rppgA518OoW2y89PXJ85LCuLzy0Y585KO19447Fp6VI7T6-Wi1VD7dGOF_BGbtwM1jYKOJASGoStjcJZQmoaqqWZ-MG3q11IGAkSFvq42N0yb-30yzXvovK4s_aC6pV09nEqbPCEX_cIQk2IVSUqRcxP9_ftTlj__T9_l51czGZZOrlMd9BuCCeQsI92R5P07awx4NmMJTZlYjP0OvwtFa_b7m8rPO0pZue6TjFjVZn0AbrvBY1HDlAPUU8v99C9TmTKPXTHMoPV5hEaWZBhCzLcgAw7kGEDMizxLZDhFmTYgOwxSk8m6fg08Hk3AkWjqApKmQjFFSVlLBQNC9BfaCyPScm0LnPNZUiUjiMpNEtyIkHFJIJzJXKV87CUdB_1l6ulfoIwlUQVAlpzo3cXuQDlXMO2lpBCc1XGA_SqnptM-Zj0JjXKh8xyI6jIxiId23mcDtCLpu3aRWLZ2uqwnuLMf6mbLDRJE1jIKLxwH6a9eb6V0gAdbK_I1kV58OdOn6K7LegPUb-6vtHPQFWt8uceND8A5iyYTQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+oxide+resistive+memory+with+a+deterministic+conduction+path&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Lee%2C+Sunghwan&rft.au=Seo%2C+Shem&rft.au=Lim%2C+Jinho&rft.au=Jeon%2C+Dasom&rft.date=2020-03-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=8&rft.issue=11&rft.spage=3897&rft.epage=3903&rft_id=info:doi/10.1039%2Fc9tc07001j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |