Metal oxide resistive memory with a deterministic conduction path

Resistive random access memories (RRAMs) with minimal power dissipation, high speed, and matrix-vector multiplication capability are potentially ideal for data-centric applications such as neuromorphic computing. However, RRAMs still suffer from instability caused by uncontrolled filament growth and...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 8; no. 11; pp. 3897 - 393
Main Authors Lee, Sunghwan, Seo, Shem, Lim, Jinho, Jeon, Dasom, Alimkhanuly, Batyrbek, Kadyrov, Arman, Lee, Seunghyun
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resistive random access memories (RRAMs) with minimal power dissipation, high speed, and matrix-vector multiplication capability are potentially ideal for data-centric applications such as neuromorphic computing. However, RRAMs still suffer from instability caused by uncontrolled filament growth and random oxygen vacancy distribution. In this study, a Ge-Sb-Te ternary chalcogenide layer that functions as a conductive lead is added to a HfO 2 -based RRAM layer to confine the subsequent filament formation to the initially determined site. Based on the DC and pulse measurement data, this technique is confirmed to improve the memory switching reproducibility without compromising its endurance and retention. Such deterministic behavior will be important in improving the sensing margin and multi-level capability of RRAM technology as the switching characteristics become more unstable with extreme device scaling. In this study, a Ge-Sb-Te ternary chalcogenide layer that functions as a conductive lead is added to a HfO 2 -based RRAM layer to improve the memory switching reproducibility and reduce HRS/LRS variations.
AbstractList Resistive random access memories (RRAMs) with minimal power dissipation, high speed, and matrix-vector multiplication capability are potentially ideal for data-centric applications such as neuromorphic computing. However, RRAMs still suffer from instability caused by uncontrolled filament growth and random oxygen vacancy distribution. In this study, a Ge-Sb-Te ternary chalcogenide layer that functions as a conductive lead is added to a HfO 2 -based RRAM layer to confine the subsequent filament formation to the initially determined site. Based on the DC and pulse measurement data, this technique is confirmed to improve the memory switching reproducibility without compromising its endurance and retention. Such deterministic behavior will be important in improving the sensing margin and multi-level capability of RRAM technology as the switching characteristics become more unstable with extreme device scaling. In this study, a Ge-Sb-Te ternary chalcogenide layer that functions as a conductive lead is added to a HfO 2 -based RRAM layer to improve the memory switching reproducibility and reduce HRS/LRS variations.
Resistive random access memories (RRAMs) with minimal power dissipation, high speed, and matrix-vector multiplication capability are potentially ideal for data-centric applications such as neuromorphic computing. However, RRAMs still suffer from instability caused by uncontrolled filament growth and random oxygen vacancy distribution. In this study, a Ge–Sb–Te ternary chalcogenide layer that functions as a conductive lead is added to a HfO2-based RRAM layer to confine the subsequent filament formation to the initially determined site. Based on the DC and pulse measurement data, this technique is confirmed to improve the memory switching reproducibility without compromising its endurance and retention. Such deterministic behavior will be important in improving the sensing margin and multi-level capability of RRAM technology as the switching characteristics become more unstable with extreme device scaling.
Resistive random access memories (RRAMs) with minimal power dissipation, high speed, and matrix-vector multiplication capability are potentially ideal for data-centric applications such as neuromorphic computing. However, RRAMs still suffer from instability caused by uncontrolled filament growth and random oxygen vacancy distribution. In this study, a Ge–Sb–Te ternary chalcogenide layer that functions as a conductive lead is added to a HfO 2 -based RRAM layer to confine the subsequent filament formation to the initially determined site. Based on the DC and pulse measurement data, this technique is confirmed to improve the memory switching reproducibility without compromising its endurance and retention. Such deterministic behavior will be important in improving the sensing margin and multi-level capability of RRAM technology as the switching characteristics become more unstable with extreme device scaling.
Author Lim, Jinho
Alimkhanuly, Batyrbek
Lee, Sunghwan
Seo, Shem
Kadyrov, Arman
Jeon, Dasom
Lee, Seunghyun
AuthorAffiliation Department of Electronic Engineering
Kyunghee University
AuthorAffiliation_xml – name: Department of Electronic Engineering
– name: Kyunghee University
Author_xml – sequence: 1
  givenname: Sunghwan
  surname: Lee
  fullname: Lee, Sunghwan
– sequence: 2
  givenname: Shem
  surname: Seo
  fullname: Seo, Shem
– sequence: 3
  givenname: Jinho
  surname: Lim
  fullname: Lim, Jinho
– sequence: 4
  givenname: Dasom
  surname: Jeon
  fullname: Jeon, Dasom
– sequence: 5
  givenname: Batyrbek
  surname: Alimkhanuly
  fullname: Alimkhanuly, Batyrbek
– sequence: 6
  givenname: Arman
  surname: Kadyrov
  fullname: Kadyrov, Arman
– sequence: 7
  givenname: Seunghyun
  surname: Lee
  fullname: Lee, Seunghyun
BookMark eNp9kM1LAzEQxYNUsNZevAsRb8JqNtnNJsey-EnFS-9LNjuhKd3NmqRq_3u3VhREnMsMvN-bGd4xGnWuA4ROU3KVEiavtYyaFISkqwM0piQnSZGzbPQ9U36EpiGsyFAi5YLLMZo9QVRr7N5tA9hDsCHaV8AttM5v8ZuNS6xwAxF8a7udqLF2XbPR0boO9youT9ChUesA068-QYvbm0V5n8yf7x7K2TzRLMtiYlQhtdCMGC41o01WpIyrlJgcwNQgFCUaeKYk5EVNlKCUSCG0rHUtqFFsgi72a3vvXjYQYrVyG98NFyvKCiFymjM-UGRPae9C8GAqbaPa_Rq9susqJdUuqqqUi_IzqsfBcvnL0nvbKr_9Gz7bwz7ob-4n90E__0-v-sawD9ECgNU
CitedBy_id crossref_primary_10_1002_admi_202100664
crossref_primary_10_1016_j_mssp_2023_107346
crossref_primary_10_1021_acs_jpclett_1c02815
crossref_primary_10_1002_pssb_202400081
crossref_primary_10_1088_1402_4896_ac97cd
crossref_primary_10_1002_advs_202105577
crossref_primary_10_1002_aelm_202100997
crossref_primary_10_1002_smll_202310943
crossref_primary_10_1016_j_mtla_2021_101277
crossref_primary_10_1063_5_0237063
Cites_doi 10.1149/2.0121512ssl
10.1063/1.2945278
10.1063/1.2828864
10.1063/1.3700730
10.1063/1.3276272
10.1063/1.2798242
10.1063/1.5098382
10.1063/1.3364130
10.1002/adma.200702081
10.1021/cr900040x
10.1116/1.3301579
10.1038/nmat2023
10.1109/JPROC.2012.2190369
10.1038/s41598-016-0001-8
10.1038/ncomms9407
10.1016/j.mser.2014.06.002
10.1016/j.mejo.2006.09.012
10.1063/1.3442499
10.3390/mi10100663
10.1109/LED.2010.2055534
10.1109/TED.2017.2746342
10.1109/JPROC.2015.2433311
10.1016/j.mejo.2016.11.006
10.1038/s41563-017-0001-5
10.1021/nn503713f
10.1063/1.3122344
10.1021/acsami.9b11721
10.1021/acsami.7b19586
10.1103/PhysRevB.81.193202
10.1109/LED.2004.831219
10.1103/PhysRevLett.21.1450
10.1002/adma.200900375
10.1063/1.2720747
10.1109/JEDS.2018.2843162
10.1109/LED.2011.2147274
10.1038/nnano.2015.29
10.1021/nl304246d
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1039/c9tc07001j
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 393
ExternalDocumentID 10_1039_C9TC07001J
c9tc07001j
GroupedDBID 0-7
0R
4.4
705
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
GNO
HZ
H~N
J3I
JG
O-G
O9-
R7C
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
0R~
AAJAE
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c344t-fa79c8c30f69c32d47136a10f5eefbe8a20ce64a9e57b0a8220988c9bcb82fa3
ISSN 2050-7526
IngestDate Mon Jun 30 04:06:31 EDT 2025
Tue Jul 01 04:26:14 EDT 2025
Thu Apr 24 22:49:10 EDT 2025
Wed Nov 11 00:36:15 EST 2020
Sat Jan 08 03:39:24 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c344t-fa79c8c30f69c32d47136a10f5eefbe8a20ce64a9e57b0a8220988c9bcb82fa3
Notes 10.1039/c9tc07001j
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4701-2856
PQID 2378852536
PQPubID 2047521
PageCount 7
ParticipantIDs rsc_primary_c9tc07001j
crossref_citationtrail_10_1039_C9TC07001J
proquest_journals_2378852536
crossref_primary_10_1039_C9TC07001J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-21
PublicationDateYYYYMMDD 2020-03-21
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-21
  day: 21
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References 17.3.4
Gao (C9TC07001J-(cit9)/*[position()=1]) 2018; 10
Tian (C9TC07001J-(cit35)/*[position()=1]) 2013; 13
Yang (C9TC07001J-(cit19)/*[position()=1]) 2014; 5
Zhang (C9TC07001J-(cit7)/*[position()=1]) 2010; 96
Ogimoto (C9TC07001J-(cit17)/*[position()=1]) 2007; 90
Sun (C9TC07001J-(cit33)/*[position()=1]) 2019; 114
Chen (C9TC07001J-(cit50)/*[position()=1]) 2008; 92
Baek (C9TC07001J-(cit47)/*[position()=1]) 2004
Jeyasingh (C9TC07001J-(cit25)/*[position()=1]) 2015
Hamoumou (C9TC07001J-(cit16)/*[position()=1]) 2016; 6
Campbell (C9TC07001J-(cit10)/*[position()=1]) 2017; 59
Campbell (C9TC07001J-(cit13)/*[position()=1]) 2007; 38
Seo (C9TC07001J-(cit15)/*[position()=1]) 2019; 11
Kozicki (C9TC07001J-(cit20)/*[position()=1])
Sun (C9TC07001J-(cit45)/*[position()=1]) 2017; 3
Fujimoto (C9TC07001J-(cit39)/*[position()=1]) 2006; 89
Kund (C9TC07001J-(cit21)/*[position()=1]) 2005
Lee (C9TC07001J-(cit4)/*[position()=1]) 2015; 6
Pan (C9TC07001J-(cit8)/*[position()=1]) 2014; 83
Raoux (C9TC07001J-(cit24)/*[position()=1]) 2010; 110
Lee (C9TC07001J-(cit48)/*[position()=1]) 2008
Wong (C9TC07001J-(cit2)/*[position()=1]) 2012; 100
Yu (C9TC07001J-(cit6)/*[position()=1])
Xu (C9TC07001J-(cit37)/*[position()=1]) 2015; 4
Gao (C9TC07001J-(cit34)/*[position()=1]) 2008
Burr (C9TC07001J-(cit28)/*[position()=1]) 2005; 28
Wong (C9TC07001J-(cit1)/*[position()=1]) 2015; 10
Ahn (C9TC07001J-(cit49)/*[position()=1]) 2008; 20
Lee (C9TC07001J-(cit41)/*[position()=1]) 2010; 81
Campbell (C9TC07001J-(cit11)/*[position()=1]) 2019
Drake (C9TC07001J-(cit12)/*[position()=1]) 2019; 10
Waser (C9TC07001J-(cit3)/*[position()=1]) 2007; 6
Pandian (C9TC07001J-(cit43)/*[position()=1]) 2009; 95
Waser (C9TC07001J-(cit5)/*[position()=1]) 2009; 37
Lee (C9TC07001J-(cit31)/*[position()=1]) 2012; 100
Lai (C9TC07001J-(cit26)/*[position()=1]) 2003
Shin (C9TC07001J-(cit46)/*[position()=1]) 2011; 32
You (C9TC07001J-(cit32)/*[position()=1]) 2014; 8
Lv (C9TC07001J-(cit30)/*[position()=1]) 2010; 31
Lacaita (C9TC07001J-(cit42)/*[position()=1]) 2004; 25
Kwak (C9TC07001J-(cit40)/*[position()=1]) 2010; 96
Ovshinsky (C9TC07001J-(cit22)/*[position()=1]) 1968; 21
Pandian (C9TC07001J-(cit44)/*[position()=1]) 2007; 91
Tao (C9TC07001J-(cit14)/*[position()=1]) 2018; 6
Fong (C9TC07001J-(cit29)/*[position()=1]) 2017; 64
Tsetseris (C9TC07001J-(cit36)/*[position()=1]) 2009; 94
Wouters (C9TC07001J-(cit27)/*[position()=1]) 2015; 103
Xu (C9TC07001J-(cit38)/*[position()=1]) 2008; 92
Gill (C9TC07001J-(cit23)/*[position()=1])
Choi (C9TC07001J-(cit18)/*[position()=1]) 2018; 17
References_xml – year: 17.3.4
  end-page: 17.3.1
  doi: Yu Guan Wong
– doi: Gill Lowrey Park
– doi: Kozicki Gopalan Balakrishnan Park Mitkova
– issn: 2019
  end-page: p 815-842
  publication-title: Handbook of Memristor Networks
  doi: Campbell
– issn: 2015
  end-page: p 78-109
  publication-title: Emerging Nanoelectronic Devices
  doi: Jeyasingh Ahn Burc Eryilmaz Fong Philip Wong
– start-page: 1
  year: 2008
  ident: C9TC07001J-(cit34)/*[position()=1]
  publication-title: IEDM Tech. Dig.
– volume: 4
  start-page: P105
  year: 2015
  ident: C9TC07001J-(cit37)/*[position()=1]
  publication-title: ECS Solid State Lett.
  doi: 10.1149/2.0121512ssl
– volume: 92
  start-page: 232112
  year: 2008
  ident: C9TC07001J-(cit38)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2945278
– volume: 92
  start-page: 013503
  year: 2008
  ident: C9TC07001J-(cit50)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2828864
– volume: 100
  start-page: 142106
  year: 2012
  ident: C9TC07001J-(cit31)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3700730
– volume: 95
  start-page: 3
  year: 2009
  ident: C9TC07001J-(cit43)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3276272
– volume: 91
  start-page: 152103
  year: 2007
  ident: C9TC07001J-(cit44)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2798242
– volume: 3
  start-page: 1
  year: 2017
  ident: C9TC07001J-(cit45)/*[position()=1]
  publication-title: Adv. Electron. Mater.
– volume: 114
  start-page: 193502
  year: 2019
  ident: C9TC07001J-(cit33)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5098382
– volume: 96
  start-page: 123502
  year: 2010
  ident: C9TC07001J-(cit7)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3364130
– volume: 20
  start-page: 924
  year: 2008
  ident: C9TC07001J-(cit49)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702081
– start-page: 587
  year: 2004
  ident: C9TC07001J-(cit47)/*[position()=1]
  publication-title: IEDM Tech. Dig.
– volume: 5
  start-page: 1
  year: 2014
  ident: C9TC07001J-(cit19)/*[position()=1]
  publication-title: Nat. Commun.
– volume: 110
  start-page: 240
  year: 2010
  ident: C9TC07001J-(cit24)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr900040x
– volume: 28
  start-page: 223
  year: 2005
  ident: C9TC07001J-(cit28)/*[position()=1]
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.3301579
– start-page: 255
  year: 2003
  ident: C9TC07001J-(cit26)/*[position()=1]
  publication-title: IEEE Int. Electron Devices Meet.
– volume: 6
  start-page: 833
  year: 2007
  ident: C9TC07001J-(cit3)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2023
– volume: 100
  start-page: 1951
  year: 2012
  ident: C9TC07001J-(cit2)/*[position()=1]
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2190369
– volume: 6
  start-page: 1
  year: 2016
  ident: C9TC07001J-(cit16)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0001-8
– volume: 6
  start-page: 8407
  year: 2015
  ident: C9TC07001J-(cit4)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9407
– volume: 83
  start-page: 1
  year: 2014
  ident: C9TC07001J-(cit8)/*[position()=1]
  publication-title: Mater. Sci. Eng., R
  doi: 10.1016/j.mser.2014.06.002
– volume-title: Emerging Nanoelectronic Devices
  year: 2015
  ident: C9TC07001J-(cit25)/*[position()=1]
– volume: 38
  start-page: 52
  year: 2007
  ident: C9TC07001J-(cit13)/*[position()=1]
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2006.09.012
– volume: 96
  start-page: 223502
  year: 2010
  ident: C9TC07001J-(cit40)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3442499
– volume: 10
  start-page: 663
  year: 2019
  ident: C9TC07001J-(cit12)/*[position()=1]
  publication-title: Micromachines
  doi: 10.3390/mi10100663
– volume: 31
  start-page: 978
  year: 2010
  ident: C9TC07001J-(cit30)/*[position()=1]
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2010.2055534
– volume: 64
  start-page: 4374
  year: 2017
  ident: C9TC07001J-(cit29)/*[position()=1]
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2017.2746342
– start-page: 3
  year: 2008
  ident: C9TC07001J-(cit48)/*[position()=1]
  publication-title: IEDM Tech. Dig.
– ident: C9TC07001J-(cit23)/*[position()=1]
– volume: 103
  start-page: 1274
  year: 2015
  ident: C9TC07001J-(cit27)/*[position()=1]
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2433311
– volume: 59
  start-page: 10
  year: 2017
  ident: C9TC07001J-(cit10)/*[position()=1]
  publication-title: Microelectron. J.
  doi: 10.1016/j.mejo.2016.11.006
– volume: 17
  start-page: 335
  year: 2018
  ident: C9TC07001J-(cit18)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-017-0001-5
– volume: 89
  start-page: 17
  year: 2006
  ident: C9TC07001J-(cit39)/*[position()=1]
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 9492
  year: 2014
  ident: C9TC07001J-(cit32)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn503713f
– start-page: 17.3.1
  ident: C9TC07001J-(cit6)/*[position()=1]
– volume: 94
  start-page: 161903
  year: 2009
  ident: C9TC07001J-(cit36)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3122344
– volume: 11
  start-page: 43466
  year: 2019
  ident: C9TC07001J-(cit15)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11721
– volume-title: Handbook of Memristor Networks
  year: 2019
  ident: C9TC07001J-(cit11)/*[position()=1]
– volume: 10
  start-page: 6453
  year: 2018
  ident: C9TC07001J-(cit9)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19586
– volume: 81
  start-page: 193202
  year: 2010
  ident: C9TC07001J-(cit41)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.193202
– volume: 25
  start-page: 507
  year: 2004
  ident: C9TC07001J-(cit42)/*[position()=1]
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2004.831219
– volume: 21
  start-page: 1450
  year: 1968
  ident: C9TC07001J-(cit22)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.21.1450
– volume: 37
  start-page: 2632
  year: 2009
  ident: C9TC07001J-(cit5)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900375
– volume: 90
  start-page: 143515
  year: 2007
  ident: C9TC07001J-(cit17)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2720747
– ident: C9TC07001J-(cit20)/*[position()=1]
– start-page: 754
  year: 2005
  ident: C9TC07001J-(cit21)/*[position()=1]
  publication-title: IEDM Tech. Dig.
– volume: 6
  start-page: 714
  year: 2018
  ident: C9TC07001J-(cit14)/*[position()=1]
  publication-title: IEEE J. Electron Devices Soc.
  doi: 10.1109/JEDS.2018.2843162
– volume: 32
  start-page: 958
  year: 2011
  ident: C9TC07001J-(cit46)/*[position()=1]
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2011.2147274
– volume: 10
  start-page: 191
  year: 2015
  ident: C9TC07001J-(cit1)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.29
– volume: 13
  start-page: 651
  year: 2013
  ident: C9TC07001J-(cit35)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl304246d
SSID ssj0000816869
Score 2.30158
Snippet Resistive random access memories (RRAMs) with minimal power dissipation, high speed, and matrix-vector multiplication capability are potentially ideal for...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3897
SubjectTerms Antimony
Hafnium oxide
Mathematical analysis
Matrix algebra
Matrix methods
Metal oxides
Multiplication
Random access memory
Switching
Tellurium
Title Metal oxide resistive memory with a deterministic conduction path
URI https://www.proquest.com/docview/2378852536
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6TkjwgGAw0TGQJXhBVYYXx4n9WJVOo-rGQzNpb5HjOOoQtNWacfsn_FuOL7kMCgJeosh2HMvni3188p1zEHpZUMmSiOdBxIQKogiOO1zHCrAsSlZCHVPGOfnsPD69iKaX7LLX-95hLd1U-ZH6ttWv5H-kCmUgV-Ml-w-SbTqFArgH-cIVJAzXv5LxmTaujKsvV4VJfrIxn-snPfxoyLNfvdfasPB8FxuQ2ZDMCxcv1kRUXfxGNQUt1g1_qOp8cEfDsXPtqWsMPXG1rppgA518OoW2y89PXJ85LCuLzy0Y585KO19447Fp6VI7T6-Wi1VD7dGOF_BGbtwM1jYKOJASGoStjcJZQmoaqqWZ-MG3q11IGAkSFvq42N0yb-30yzXvovK4s_aC6pV09nEqbPCEX_cIQk2IVSUqRcxP9_ftTlj__T9_l51czGZZOrlMd9BuCCeQsI92R5P07awx4NmMJTZlYjP0OvwtFa_b7m8rPO0pZue6TjFjVZn0AbrvBY1HDlAPUU8v99C9TmTKPXTHMoPV5hEaWZBhCzLcgAw7kGEDMizxLZDhFmTYgOwxSk8m6fg08Hk3AkWjqApKmQjFFSVlLBQNC9BfaCyPScm0LnPNZUiUjiMpNEtyIkHFJIJzJXKV87CUdB_1l6ulfoIwlUQVAlpzo3cXuQDlXMO2lpBCc1XGA_SqnptM-Zj0JjXKh8xyI6jIxiId23mcDtCLpu3aRWLZ2uqwnuLMf6mbLDRJE1jIKLxwH6a9eb6V0gAdbK_I1kV58OdOn6K7LegPUb-6vtHPQFWt8uceND8A5iyYTQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal+oxide+resistive+memory+with+a+deterministic+conduction+path&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Lee%2C+Sunghwan&rft.au=Seo%2C+Shem&rft.au=Lim%2C+Jinho&rft.au=Jeon%2C+Dasom&rft.date=2020-03-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=8&rft.issue=11&rft.spage=3897&rft.epage=3903&rft_id=info:doi/10.1039%2Fc9tc07001j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon