Adaptive and robust control of quadrotor aircrafts with input saturation

This paper proposes a novel adaptive robust controller for the position and attitude tracking of quadrotor unmanned aerial vehicles subjected to additive disturbances and parameter uncertainties. The nonlinear dynamic equations of the quadrotor are obtained by using the Newton–Euler formalism. An em...

Full description

Saved in:
Bibliographic Details
Published inNonlinear dynamics Vol. 89; no. 1; pp. 255 - 265
Main Authors Li, Shushuai, Wang, Yaonan, Tan, Jianhao
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.07.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper proposes a novel adaptive robust controller for the position and attitude tracking of quadrotor unmanned aerial vehicles subjected to additive disturbances and parameter uncertainties. The nonlinear dynamic equations of the quadrotor are obtained by using the Newton–Euler formalism. An emendatory tracking error is introduced to the modified controller to prevent the system and adaption law from degradation or even instability due to control input saturation caused by actuator constraints. The stability of the closed-loop aircraft system under the proposed control law is guaranteed via Lyapunov theory despite the sustained disturbances and actuator saturation. Simulation results are presented to demonstrate the effectiveness of the proposed control method, and the robustness against unknown nonlinear dynamics caused by parametric uncertainties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-017-3451-z