A New Feature Selection Technique for Load and Price Forecast of Electrical Power Systems
Load and price forecasts are necessary for optimal operation planning in competitive electricity markets. However, most of the load and price forecast methods suffer from lack of an efficient feature selection technique with the ability of modeling the nonlinearities and interacting features of the...
Saved in:
Published in | IEEE transactions on power systems Vol. 32; no. 1; pp. 62 - 74 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Load and price forecasts are necessary for optimal operation planning in competitive electricity markets. However, most of the load and price forecast methods suffer from lack of an efficient feature selection technique with the ability of modeling the nonlinearities and interacting features of the forecast processes. In this paper, a new feature selection method is presented. An important contribution of the proposed method is modeling interaction in addition to relevancy and redundancy, based on information-theoretic criteria, for feature selection. Another main contribution of the paper is proposing a hybrid filter-wrapper approach. The filter part selects a minimum subset of the most informative features by considering relevancy, redundancy, and interaction of the candidate inputs in a coordinated manner. The wrapper part fine-tunes the settings of the composite filter. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2016.2556620 |