Accelerated genetic algorithm based on search-space decomposition for change detection in remote sensing images
Detecting change areas among two or more remote sensing images is a key technique in remote sensing. It usually consists of generating and analyzing a difference image thus to produce a change map. Analyzing the difference image to obtain the change map is essentially a binary classification problem...
Saved in:
Published in | Applied soft computing Vol. 84; p. 105727 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Detecting change areas among two or more remote sensing images is a key technique in remote sensing. It usually consists of generating and analyzing a difference image thus to produce a change map. Analyzing the difference image to obtain the change map is essentially a binary classification problem, and can be solved by optimization algorithms. This paper proposes an accelerated genetic algorithm based on search-space decomposition (SD-aGA) for change detection in remote sensing images. Firstly, the BM3D algorithm is used to preprocess the remote sensing image to enhance useful information and suppress noises. The difference image is then obtained using the logarithmic ratio method. Secondly, after saliency detection, fuzzy c-means algorithm is conducted on the salient region detected in the difference image to identify the changed, unchanged and undetermined pixels. Only those undetermined pixels are considered by the optimization algorithm, which reduces the search space significantly. Inspired by the idea of the divide-and-conquer strategy, the difference image is decomposed into sub-blocks with a method similar to down-sampling, where only those undetermined pixels are analyzed and optimized by SD-aGA in parallel. The category labels of the undetermined pixels in each sub-block are optimized according to an improved objective function with neighborhood information. Finally the decision results of the category labels of all the pixels in the sub-blocks are remapped to their original positions in the difference image and then merged globally. Decision fusion is conducted on each pixel based on the decision results in the local neighborhood to produce the final change map. The proposed method is tested on six diverse remote sensing image benchmark datasets and compared against six state-of-the-art methods. Segmentations on the synthetic image and natural image corrupted by different noise are also carried out for comparison. Results demonstrate the excellent performance of the proposed SD-aGA on handling noises and detecting the changed areas accurately. In particular, compared with the traditional genetic algorithm, SD-aGA can obtain a much higher degree of detection accuracy with much less computational time.
[Display omitted]
•An accelerated genetic algorithm (SD-aGA) is proposed for change detection.•The BM3D algorithm is used to enhance useful information and suppress noises.•The difference image is decomposed into sub-blocks for parallelization.•Decision fusion is conducted on each pixel to produce the final change map.•Results show SD-aGA can handle noises well and detect the changed areas accurately. |
---|---|
ISSN: | 1568-4946 1872-9681 |
DOI: | 10.1016/j.asoc.2019.105727 |