Supply organ development of young broilers in response to increased carbohydrates and amino acids in the starter period

The growth of broiler chickens is marked by high fluctuations, varying nutrient requirement, early growth is characterized by high allometric growth rates of supply organs, which if underdeveloped, can impede nutrient efficiency and growth of demand organs like muscle and skeleton. This study aimed...

Full description

Saved in:
Bibliographic Details
Published inPoultry science Vol. 103; no. 10; p. 104092
Main Authors Diehl, J.J.E., van Eerden, E., Duijster, M., Kwakkel, R.P.
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.10.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The growth of broiler chickens is marked by high fluctuations, varying nutrient requirement, early growth is characterized by high allometric growth rates of supply organs, which if underdeveloped, can impede nutrient efficiency and growth of demand organs like muscle and skeleton. This study aimed to investigate the impact of carbohydrate- and amino-acid-rich diets on the development of supply organs in broiler chickens. Four dietary treatments were used in a 2 × 2 factorial arrangement of treatments with apparent metabolizable energy (AME) at 2 levels (low: 2,750 kcal/kg and high: 3,050 kcal/kg) and standardized ileal digestible (SID) lysine at 2 levels (low: 1.0% and high: 1.2%) in the starter diets. Feed intake (FI) and BW gain were measured weekly; dissections were conducted at d 4 and d 11 to determine supply organ weights. Allometric growth of the liver was higher (P < 0.001) in the high AME and low lysine group compared to the other groups. For the pancreas, the highest (P < 0.001) allometric growth rate was in the high lysine groups. The small intestines responded differently; the duodenum had the highest (P < 0.001) allometric growth rate in the high AME groups and the jejunum in the low lysine groups, whereas the ileum showed an effect of diet density. For performance, high AME from carbohydrates, via maize starch, had a negative effect (P < 0.001) on FI and BW gain. High lysine had a positive effect (P < 0.001) on BW gain and FI, and high lysine alleviated part of the detrimental effect of high AME from carbohydrates. This effect was visible from d 0 to d 11, and persisted till the end of the trial on d 35. In conclusion, feeding a diet with a high AME from carbohydrates has negative consequences for the development of the supply organs of broilers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0032-5791
1525-3171
1525-3171
DOI:10.1016/j.psj.2024.104092