On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind
In the article, we prove that the double inequalities1+(6p−7)r′p+(5p−6)r′πtanh−1(r)2r<K(r)<1+(6q−7)r′q+(5q−6)r′πtanh−1(r)2r,qA(1,r)+(5q−6)G(1,r)A(1,r)+(6q−7)G(1,r)L(1,r)<AGM(1,r)<pA(1,r)+(5p−6)G(1,r)A(1,r)+(6p−7)G(1,r)L(1,r) hold for all r∈(0,1) if and only if p≥π/2=1.570796⋯ and q≤89/...
Saved in:
Published in | Journal of mathematical analysis and applications Vol. 462; no. 2; pp. 1714 - 1726 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the article, we prove that the double inequalities1+(6p−7)r′p+(5p−6)r′πtanh−1(r)2r<K(r)<1+(6q−7)r′q+(5q−6)r′πtanh−1(r)2r,qA(1,r)+(5q−6)G(1,r)A(1,r)+(6q−7)G(1,r)L(1,r)<AGM(1,r)<pA(1,r)+(5p−6)G(1,r)A(1,r)+(6p−7)G(1,r)L(1,r) hold for all r∈(0,1) if and only if p≥π/2=1.570796⋯ and q≤89/69=1.289855⋯, where K(r)=∫0π/2(1−r2sin2t)−1/2dt is the complete elliptic integral of the first kind, tanh−1(r)=log[(1+r)/(1−r)]/2 is the inverse hyperbolic tangent function, r′=1−r2, and A(1,r)=(1+r)/2, G(1,r)=r, L(1,r)=(r−1)/logr and AGM(1,r) are the arithmetic, geometric, logarithmic and Gaussian arithmetic-geometric means of 1 and r, respectively. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2018.03.005 |