Association of rat thoracic aorta dilatation by astragaloside IV with the generation of endothelium-derived hyperpolarizing factors and nitric oxide, and the blockade of Ca2+ channels

The aim of the present study was to elucidate the roles of endothelium-derived hyperpolarizing factors (EDHFs) and nitric oxide (NO) in mediating the vasodilatation response to astragaloside IV and the effects of astragaloside IV on voltage-dependent Ca2+ channels and receptor-operated Ca2+ channels...

Full description

Saved in:
Bibliographic Details
Published inBiomedical reports Vol. 5; no. 1; pp. 27 - 34
Main Authors HU, GUANYING, LI, XIXIONG, ZHANG, SANYIN, WANG, XIN
Format Journal Article
LanguageEnglish
Published Athens D.A. Spandidos 01.07.2016
Spandidos Publications UK Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of the present study was to elucidate the roles of endothelium-derived hyperpolarizing factors (EDHFs) and nitric oxide (NO) in mediating the vasodilatation response to astragaloside IV and the effects of astragaloside IV on voltage-dependent Ca2+ channels and receptor-operated Ca2+ channels in rat thoracic aortic rings precontracted with potassium chloride (KCl; 60 mM) or phenylephrine (PHE; 1 µM). The results showed that astragaloside IV (1×10−4-3×10−1 g/l) concentration-dependently relaxed the contraction induced by KCl (10-90 mM) or PHE (1×10−9-3×10−5 µM) and inhibited concentration-contraction curves for the two vasoconstrictors in the aortic rings. Preincubation with Nω-nitro-L-arginine methyl ester (L-NAME, 100 µM) significantly attenuated astragaloside IV-induced relaxation in the endothelium-intact and -denuded arterial rings precontracted with PHE. Astragaloside IV, following preincubation with L-NAME (100 µM) plus indomethacin (10 µM), exerted vasodilatation, which was depressed by tetraethtylamine (1 mM) and propargylglycine (100 µM), but not by carbenoxolone (10 µM), catalase (500 U/ml) or proadifen hydrochloride (10 µM). The action mode of astragaloside IV was evident in comparison to nifedipine. Inhibition of PHE-induced contraction by astragaloside IV (100 mg/l) was more potent compared to inhibition of KCl-induced contraction, while inhibition of KCl-induced contraction by nifedipine (100 mg/l) was more potent compared to inhibition of PHE-induced contraction by nifedipine (100 mg/l). In addition, the combination of astragaloside IV and nifedipine exhibited synergistic and additive inhibitory effects on contraction evoked by KCl, which was similar to PHE. In conclusion, astragaloside IV, as a Ca2+ antagonist, relaxes the vessels through the blockade of superior receptor-operated Ca2+ and inferior voltage-dependent Ca2+ channels, which modulate NO from vascular endothelial cells and vascular smooth muscle cells, and EDHFs including K+ and hydrogen sulfide.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2049-9434
2049-9442
DOI:10.3892/br.2016.680