Cloning of genes that have environmental and clinical importance from rhodococci and related bacteria
Generalised and specialised transduction systems were developed for Rhodococcus by means of bacteriophage Q4. The latter was used in conjunction with DNA from an unstable genetic element of R. rhodochrous to construct resistance plasmids which replicate in strains of R. equi, R. erythropolis and R....
Saved in:
Published in | Antonie van Leeuwenhoek Vol. 74; no. 1-3; pp. 155 - 168 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Netherlands
Springer Nature B.V
01.10.1998
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Generalised and specialised transduction systems were developed for Rhodococcus by means of bacteriophage Q4. The latter was used in conjunction with DNA from an unstable genetic element of R. rhodochrous to construct resistance plasmids which replicate in strains of R. equi, R. erythropolis and R. rhodochrous. One of the plasmids, pDA21, was joined with Erythropolis coli suicide vector pEcoR251 to obtain shuttle plasmids maintained in both rhodococci and E. coli. Conjugation between these rhodococcal strains demonstrated all were interfertile with each other and that some of the determinants for this were located on the unstable genetic element. Plasmids derived from this element, such as pDA21, carried the conjugative and self-incompatibility capacities; deletion analysis revealed that DNA necessary for self-incompatibility overlapped with that for arsenic resistance. Rifampicin is one of the principal chemotherapeutic agents used to treat infections by rhodococci and related organisms. The genes responsible for two types of inactivation have been cloned. The sequence of the R. equi DNA responsible for decomposition of the antibiotic strongly resembled those of monooxygenases acting upon phenolic compounds, consistent with the presence of a naphthalenyl moiety in the rifampicin molecule. Antibiotic resistance conferred by the gene was surprisingly specific to the semisynthetic compounds rifampicin (150-fold increase) and rifapentine (70-fold). Similar specificity was observed with the other inactivation gene cloned, which ribosylates rifampicin at the 23-hydroxyl position. A 60-bp sequence upstream of the monooxygenase and ribosylation genes is strikingly similar suggesting a shared pattern of regulation. Rhodococcal arsenic resistance and azo dye degradation genes have been cloned and characterised. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Feature-3 ObjectType-Review-1 |
ISSN: | 0003-6072 1572-9699 |
DOI: | 10.1023/A:1001728601321 |