SwipeFormer: Transformers for mobile touchscreen biometrics

The growing number of mobile devices over the past few years brings a large amount of personal information, which needs to be properly protected. As a result, several mobile authentication methods have been developed. In particular, behavioural biometrics has become one of the most relevant methods...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 237; p. 121537
Main Authors Delgado-Santos, Paula, Tolosana, Ruben, Guest, Richard, Lamb, Parker, Khmelnitsky, Andrei, Coughlan, Colm, Fierrez, Julian
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The growing number of mobile devices over the past few years brings a large amount of personal information, which needs to be properly protected. As a result, several mobile authentication methods have been developed. In particular, behavioural biometrics has become one of the most relevant methods due to its ability to extract the uniqueness of each subject in a secure, non-intrusive, and continuous way. This article presents SwipeFormer, a novel Transformer-based system for mobile subject authentication by means of swipe gestures in an unconstrained scenario (i.e., subjects could use their personal devices freely, without restrictions on the direction of swipe gestures or the position of the device). Our proposed system contains two modules: (i) a Transformer-based feature extractor, and (ii) a similarity computation module. Mobile data from the touchscreen and different background sensors (accelerometer and gyroscope) have been studied, including in the analysis both Android and iOS operating systems. A complete analysis of SwipeFormer is carried out using an in-house large-scale database acquired in unconstrained scenarios. In these operational conditions, SwipeFormer achieves Equal Error Rate (EER) values of 6.6% and 3.6% on Android and iOS respectively, outperforming the state of the art. In addition, we evaluate SwipeFormer on the popular publicly available databases Frank DB and HuMIdb, achieving EER values of 11.0% and 5.0% respectively, outperforming previous approaches under the same experimental setup. •Touchscreen biometrics can enhance mobile security, being robust and user-friendly.•We present SwipeFormer, a touchscreen biometric system based on Transformers.•Experimental analysis of mobile swipe biometrics in unconstrained scenarios.•We make our experimental framework available to the research community.
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2023.121537