Some generalization of Cauchy’s and Wilson’s functional equations on abelian groups

We find the solutions f , g , h : G → X , α : G → K of the functional equation ∑ λ ∈ K f ( x + λ y ) = | K | g ( x ) + α ( x ) h ( y ) , x , y ∈ G , where ( G , +) is an abelian group, K is a finite, abelian subgroup of the automorphism group of G , X is a linear space over the field K ∈ { R , C } ....

Full description

Saved in:
Bibliographic Details
Published inAequationes mathematicae Vol. 89; no. 3; pp. 591 - 603
Main Author Ukasik, Radosaw
Format Journal Article
LanguageEnglish
Published Basel Springer Basel 01.06.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We find the solutions f , g , h : G → X , α : G → K of the functional equation ∑ λ ∈ K f ( x + λ y ) = | K | g ( x ) + α ( x ) h ( y ) , x , y ∈ G , where ( G , +) is an abelian group, K is a finite, abelian subgroup of the automorphism group of G , X is a linear space over the field K ∈ { R , C } .
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0001-9054
1420-8903
DOI:10.1007/s00010-013-0244-4