Some generalization of Cauchy’s and Wilson’s functional equations on abelian groups
We find the solutions f , g , h : G → X , α : G → K of the functional equation ∑ λ ∈ K f ( x + λ y ) = | K | g ( x ) + α ( x ) h ( y ) , x , y ∈ G , where ( G , +) is an abelian group, K is a finite, abelian subgroup of the automorphism group of G , X is a linear space over the field K ∈ { R , C } ....
Saved in:
Published in | Aequationes mathematicae Vol. 89; no. 3; pp. 591 - 603 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
Springer Basel
01.06.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We find the solutions
f
,
g
,
h
:
G
→
X
,
α
:
G
→
K
of the functional equation
∑
λ
∈
K
f
(
x
+
λ
y
)
=
|
K
|
g
(
x
)
+
α
(
x
)
h
(
y
)
,
x
,
y
∈
G
,
where (
G
, +) is an abelian group,
K
is a finite, abelian subgroup of the automorphism group of
G
,
X
is a linear space over the field
K
∈
{
R
,
C
}
. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
ISSN: | 0001-9054 1420-8903 |
DOI: | 10.1007/s00010-013-0244-4 |