Stabilities of shape identification inverse problems in a Bayesian framework
A general shape identification inverse problem is studied in a Bayesian framework. This problem requires the determination of the unknown shape of a domain in the Euclidean space from finite-dimensional observation data with some Gaussian random noise. Then, the stability of posterior is studied for...
Saved in:
Published in | Journal of mathematical analysis and applications Vol. 486; no. 2; p. 123903 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A general shape identification inverse problem is studied in a Bayesian framework. This problem requires the determination of the unknown shape of a domain in the Euclidean space from finite-dimensional observation data with some Gaussian random noise. Then, the stability of posterior is studied for observation data. For each point of the space, the conditional probability that the point is included in the unknown domain given the observation data is considered. The stability is also studied for this probability distribution. As a model problem for our inverse problem, a heat inverse problem is considered. This problem requires the determination of the unknown shape of cavities in a heat conductor from temperature data of some portion of the surface of the heat conductor. To apply the above stability results to this model problem, one needs the measurability and some boundedness of the forward operator. These properties are shown. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2020.123903 |