Acetylcholine Ca2+ stores refilling directly involves a dihydropyridine-sensitive channel in dog trachea
Repetitive stimulation of the smooth muscle with acetylcholine (ACh) in the continuous presence of nifedipine resulted in a progressive decrease in the developed tension. This was associated with a decrease in the content of the agonist-sensitive intracellular Ca2+ stores. Agonist-sensitive internal...
Saved in:
Published in | The American journal of physiology Vol. 261; no. 3 Pt 1; p. C497 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.1991
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | Repetitive stimulation of the smooth muscle with acetylcholine (ACh) in the continuous presence of nifedipine resulted in a progressive decrease in the developed tension. This was associated with a decrease in the content of the agonist-sensitive intracellular Ca2+ stores. Agonist-sensitive internal Ca2+ stores appeared to be readily depleted by successive or prolonged agonist stimulation in Ca(2+)-free medium. The refilling of the empty stores when the muscle is at rest required extracellular Ca2+, was decreased by nifedipine, and was increased by BAY K 8644 and by increased external Ca2+ concentration. Refilling of stores during ACh stimulation in Ca(2+)-containing medium was decreased by nifedipine and by cyclopiazonic acid (CPA), an inhibitor of the sarcoplasmic reticulum (SR) Ca2+ pump, and was potentiated by BAY K 8644. BAY K 8644 reversed the inhibitory effect of CPA on stores Ca2+ refilling. Ryanodine in normal Krebs increased muscle resting tension, an effect not observed in Ca(2+)-free medium, blocked by nifedipine and enhanced by BAY K 8644. We propose that the refilling of ACh-sensitive internal Ca2+ stores involves two distinct pathways, one dependent on the uptake of cytosolic Ca2+ via a CPA-sensitive SR Ca(2+)-adenosinetriphosphatase, and the other pathway dependent on extracellular Ca2+ influx via a dihydropyridine-sensitive Ca2+ channel and is CPA insensitive. The refilling pathway between plasmalemma and SR may involve a plasmalemma L-type Ca2+ channel (dihydropyridine sensitive) and the SR Ca2+ release channel (ryanodine sensitive). |
---|---|
ISSN: | 0002-9513 |
DOI: | 10.1152/ajpcell.1991.261.3.c497 |