PGC-1β regulates HER2-overexpressing breast cancer cells proliferation by metabolic and redox pathways

Breast cancer is a prevalent neoplastic disease among women worldwide which treatments still present several side effects and resistance. Considering that cancer cells present derangements in their energetic homeostasis, and that peroxisome proliferator-activated receptor- gamma coactivator 1 (PGC-1...

Full description

Saved in:
Bibliographic Details
Published inTumor biology Vol. 37; no. 5; pp. 6035 - 6044
Main Authors Victorino, Vanessa Jacob, Barroso, W. A., Assunção, A. K. M., Cury, V., Jeremias, I. C., Petroni, R., Chausse, B., Ariga, S. K., Herrera, A. C. S. A., Panis, C., Lima, T. M., Souza, H. P.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Breast cancer is a prevalent neoplastic disease among women worldwide which treatments still present several side effects and resistance. Considering that cancer cells present derangements in their energetic homeostasis, and that peroxisome proliferator-activated receptor- gamma coactivator 1 (PGC-1) is crucial for cellular metabolism and redox signaling, the main objective of this study was to investigate whether there is a relationship between PGC-1 expression, the proliferation of breast cancer cells and the mechanisms involved. We initially assessed PGC-1β expression in complementary DNA (cDNA) from breast tumor of patients bearing luminal A, luminal B, and HER2-overexpressed and triple negative tumors. Our data showed that PGC-1β expression is increased in patients bearing HER2-overexpressing tumors as compared to others subtypes. Using quantitative PCR and immunoblotting, we showed that breast cancer cells with HER2-amplification (SKBR-3) have greater expression of PGC-1β as compared to a non-tumorous breast cell (MCF-10A) and higher proliferation rate. PGC-1β expression was knocked down with short interfering RNA in HER2-overexpressing cells, and cells decreased proliferation. In these PGC-1β-inhibited cells, we found increased citrate synthase activity and no marked changes in mitochondrial respiration. Glycolytic pathway was decreased, characterized by lower intracellular lactate levels. In addition, after PGC-1β knockdown, SKBR-3 cells showed increased reactive oxygen species production, no changes in antioxidant activity, and decreased expression of ERRα, a modulator of metabolism. In conclusion, we show an association of HER2-overexpression and PGC-1β. PGC-1β knockdown impairs HER2-overexpressing cells proliferation acting on ERRα signaling, metabolism, and redox balance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1010-4283
1423-0380
DOI:10.1007/s13277-015-4449-0