Convergence to travelling waves for quasilinear Fisher–KPP type equations

We consider the Cauchy problem{ut=φ(u)xx+ψ(u),(t,x)∈R+×R,u(0,x)=u0(x),x∈R, when the increasing function φ satisfies that φ(0)=0 and the equation may degenerate at u=0 (in the case of φ′(0)=0). We consider the case of u0∈L∞(R), 0⩽u0(x)⩽1 a.e. x∈R and the special case of ψ(u)=u−φ(u). We prove that the...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical analysis and applications Vol. 390; no. 1; pp. 74 - 85
Main Authors Díaz, J.I., Kamin, S.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.06.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider the Cauchy problem{ut=φ(u)xx+ψ(u),(t,x)∈R+×R,u(0,x)=u0(x),x∈R, when the increasing function φ satisfies that φ(0)=0 and the equation may degenerate at u=0 (in the case of φ′(0)=0). We consider the case of u0∈L∞(R), 0⩽u0(x)⩽1 a.e. x∈R and the special case of ψ(u)=u−φ(u). We prove that the solution approaches the travelling wave solution (with speed c=1), spreading either to the right or to the left, or to the two travelling waves moving in opposite directions.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2012.01.018