Fixed-time dual-channel event-triggered secure quasi-synchronization of coupled memristive neural networks
This paper is concerned with the fixed-time quasi-synchronization of coupled memristive neural networks (CMNNs). The communication channel is subject to the deception attack described by the Bernoulli stochastic variable. To reduce signal transmissions, a dual-channel event-triggered mechanism is pr...
Saved in:
Published in | Journal of the Franklin Institute Vol. 358; no. 18; pp. 10052 - 10078 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elmsford
Elsevier Ltd
01.12.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper is concerned with the fixed-time quasi-synchronization of coupled memristive neural networks (CMNNs). The communication channel is subject to the deception attack described by the Bernoulli stochastic variable. To reduce signal transmissions, a dual-channel event-triggered mechanism is proposed. In each channel of sensor to controller and controller to actuator, an event-triggered mechanism is designed. Compared with the single event-triggered mechanism in the communication loop, the main difficulties lie in how to deal with the problems of packet scheduling and network attacks. By using Lyapunov method combining with a new proposed lemma, some sufficient conditions are derived to guarantee the leader-following quasi-synchronization of CMNNs. The Zeno behavior is excluded for the designed dual-channel event-triggered mechanism. The influence of the event-triggered mechanism on the estimation of settling time is discussed. Three numerical examples are provided to show the effectiveness of the theoretical results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0016-0032 1879-2693 0016-0032 |
DOI: | 10.1016/j.jfranklin.2021.10.023 |