Friction stir processing induced elctrochemical performance improvement of commercial Al for Al-air battery

Friction stir processing (FSP) is applied in the treatment of low cost commercial purity Al (CP-Al) containing iron impurity element with the aim of optimizing the electrochemical properties and discharge performance of CP-Al as the anode of Al-air battery. FSP induced severe plastic deformation eff...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 354; p. 136635
Main Authors Zheng, Xiaobo, Zhang, Ting, Yang, Hejie, Zheng, Qiaoling, Gao, Yimin, Liu, Zhiwei, Wang, Wen, Wang, Kuaishe
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 10.09.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Friction stir processing (FSP) is applied in the treatment of low cost commercial purity Al (CP-Al) containing iron impurity element with the aim of optimizing the electrochemical properties and discharge performance of CP-Al as the anode of Al-air battery. FSP induced severe plastic deformation effects not only significantly refines CP-Al grains which have an average size of 3 μm but also leads to the fragmentation and the reduction in the amount of Al-Fe phase. Due to the above reasons induced by FSP, the corrosion resistance of CP-Al is increased, which is proved by hydrogen evolution rate test, potentiodynamic polarization measurement and EIS test; on the other hand, more negative corrosion potential values of CP-Al are obtained, indicating both the electrochemical activity and corrosion resistance of CP-Al are enhanced simultaneously. FSP make the discharge performance of CP-Al anode more stable and the average values of discharge potential, energy density as well as utilization of CP-Al anode are significantly increase from 1.054V/1251 mWh g−1/39.8% to 1.116V/1674 mWh g−1/50.3% at 20 mA∙cm−2. Meanwhile, the power densities of two batteries with C-Al and FSP-Al anodes are 44.38 and 47.17 mW cm−2 at 50 mA cm−2, and the difference of which reached a maximum of 2.79 mW cm−2. The improvements in electrical properties and discharge performance of CP-Al anode can be attributed to the microstructural refinement and the decrease in self-corrosion of CP-Al induced by FSP.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2020.136635