Attribute Feature Perturbation-Based Augmentation of SAR Target Data

Large-scale, diverse, and high-quality data are the basis and key to achieving a good generalization of target detection and recognition algorithms based on deep learning. However, the existing methods for the intelligent augmentation of synthetic aperture radar (SAR) images are confronted with seve...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 15; p. 5006
Main Authors Jin, Rubo, Cheng, Jianda, Wang, Wei, Zhang, Huiqiang, Zhang, Jun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 02.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Large-scale, diverse, and high-quality data are the basis and key to achieving a good generalization of target detection and recognition algorithms based on deep learning. However, the existing methods for the intelligent augmentation of synthetic aperture radar (SAR) images are confronted with several issues, including training instability, inferior image quality, lack of physical interpretability, etc. To solve the above problems, this paper proposes a feature-level SAR target-data augmentation method. First, an enhanced capsule neural network (CapsNet) is proposed and employed for feature extraction, decoupling the attribute information of input data. Moreover, an attention mechanism-based attribute decoupling framework is used, which is beneficial for achieving a more effective representation of features. After that, the decoupled attribute feature, including amplitude, elevation angle, azimuth angle, and shape, can be perturbed to increase the diversity of features. On this basis, the augmentation of SAR target images is realized by reconstructing the perturbed features. In contrast to the augmentation methods using random noise as input, the proposed method realizes the mapping from the input of known distribution to the change in unknown distribution. This mapping method reduces the correlation distance between the input signal and the augmented data, therefore diminishing the demand for training data. In addition, we combine pixel loss and perceptual loss in the reconstruction process, which improves the quality of the augmented SAR data. The evaluation of the real and augmented images is conducted using four assessment metrics. The images generated by this method achieve a peak signal-to-noise ratio (PSNR) of 21.6845, radiometric resolution (RL) of 3.7114, and dynamic range (DR) of 24.0654. The experimental results demonstrate the superior performance of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s24155006