Mixed time/event-triggered distributed predictive control over wired-wireless networks
Communicating via mixed wired-wireless connections is the development trend for large-scale distributed control systems. In this communication environment, due to the limited wireless resources, the communication patterns of subsystems have changed fundamentally, and the design of time-triggered and...
Saved in:
Published in | Journal of the Franklin Institute Vol. 354; no. 9; pp. 3724 - 3743 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elmsford
Elsevier Ltd
01.06.2017
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0016-0032 1879-2693 0016-0032 |
DOI | 10.1016/j.jfranklin.2016.08.002 |
Cover
Loading…
Summary: | Communicating via mixed wired-wireless connections is the development trend for large-scale distributed control systems. In this communication environment, due to the limited wireless resources, the communication patterns of subsystems have changed fundamentally, and the design of time-triggered and event-triggered distributed controllers should be taken into account simultaneously. The objective of this paper is to investigate mixed time/event-triggered dual-mode distributed predictive control (DPC) for constrained large-scale linear systems subject to bounded disturbances. Considering the effects of two different communication modes and introducing a prediction error between the current actual state and predicted state, the event-triggering condition is derived for each event-triggered subsystem. Based on this, a mixed time/event-triggered dual-mode DPC algorithm is proposed in view of the asynchronous coordination among subsystems. Furthermore, the sufficient conditions to ensure the recursive feasibility and closed-loop stability of mixed triggered DPC are developed. Finally, a multi-vehicle control system is provided to verify the effectiveness of the proposed approach. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0016-0032 1879-2693 0016-0032 |
DOI: | 10.1016/j.jfranklin.2016.08.002 |