Natural tuning: towards a proof of concept
A bstract The cosmological constant problem and the absence of new natural physics at the electroweak scale, if confirmed by the LHC, may either indicate that the nature is fine-tuned or that a refined notion of naturalness is required. We construct a family of toy UV complete quantum theories provi...
Saved in:
Published in | The journal of high energy physics Vol. 2013; no. 9; pp. 1 - 24 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2013
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A
bstract
The cosmological constant problem and the absence of new natural physics at the electroweak scale, if confirmed by the LHC, may either indicate that the nature is fine-tuned or that a refined notion of naturalness is required. We construct a family of toy UV complete quantum theories providing a proof of concept for the second possibility. Low energy physics is described by a tuned effective field theory, which exhibits relevant interactions not protected by any symmetries and separated by an arbitrary large mass gap from the new “gravitational” physics, represented by a set of irrelevant operators. Nevertheless, the only available language to describe dynamics at all energy scales does not require any fine-tuning. The interesting novel feature of this construction is that UV physics is not described by a fixed point, but rather exhibits asymptotic fragility. Observation of additional unprotected scalars at the LHC would be a smoking gun for this scenario. Natural tuning also favors TeV scale unification. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP09(2013)045 |