Actinide endohedral boron clusters: A closed-shell electronic structure of U@B40
The distinctive electronic bonding properties of actinide-containing clusters have made them the subject of increased attention. Herein, we use density functional theory calculations to examine a unique actinide-encapsulated U@B40 cage structure, revealing that it exhibits a 32-electron (1S2P61Dl01F...
Saved in:
Published in | Nano research Vol. 11; no. 1; pp. 354 - 359 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The distinctive electronic bonding properties of actinide-containing clusters have made them the subject of increased attention. Herein, we use density functional theory calculations to examine a unique actinide-encapsulated U@B40 cage structure, revealing that it exhibits a 32-electron (1S2P61Dl01FTM) closed-shell singlet configuration in which all s, p, d, and f shells of the U atom are filled. Furthermore, the binding energy of 8.22 eV calculated for this cluster implies considerable stability, and the simulated infrared and Raman spectra feature U-B40 stretching and pure B40 breathing vibration modes, respectively. These spectral characteristics may aid future experimental investigations. Thus, this work not only describes a new member of the superatomic family, but also provides a method of encapsulating radioactive actinides. |
---|---|
Bibliography: | The distinctive electronic bonding properties of actinide-containing clusters have made them the subject of increased attention. Herein, we use density functional theory calculations to examine a unique actinide-encapsulated U@B40 cage structure, revealing that it exhibits a 32-electron (1S2P61Dl01FTM) closed-shell singlet configuration in which all s, p, d, and f shells of the U atom are filled. Furthermore, the binding energy of 8.22 eV calculated for this cluster implies considerable stability, and the simulated infrared and Raman spectra feature U-B40 stretching and pure B40 breathing vibration modes, respectively. These spectral characteristics may aid future experimental investigations. Thus, this work not only describes a new member of the superatomic family, but also provides a method of encapsulating radioactive actinides. 11-5974/O4 actinide-containing cluster,32-electronprinciple,superatomic orbital,vibrational spectra,density functional theory(DFT) calculation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-017-1637-9 |