Sliding-mode secure control for jump cyber– physical systems with malicious attacks
This paper develops the secure control strategy design issue for jump cyber–physical systems (CPSs) with malicious attacks. In the jump CPSs, the jump signals are assumed to obey the semi-Markov distribution with the transition probability depends on the stochastic sojourn-time, the physical plant a...
Saved in:
Published in | Journal of the Franklin Institute Vol. 358; no. 7; pp. 3424 - 3440 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elmsford
Elsevier Ltd
01.05.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper develops the secure control strategy design issue for jump cyber–physical systems (CPSs) with malicious attacks. In the jump CPSs, the jump signals are assumed to obey the semi-Markov distribution with the transition probability depends on the stochastic sojourn-time, the physical plant and actuator simultaneous subject to the adversarial attack. A secure control strategy on robust sliding-mode control (SMC) is designed to deal with the malicious attacks. Firstly, an integral sliding-mode hyperplane is constructed, and the sliding-mode dynamics is discussed. Then, the slide-mode parameters are solved by the linear matrix inequality method with prescribed H∞ damping index. Furthermore, a robust sliding-mode controller is presented, and the reachability of the sliding-mode motion is analyzed. Finally, two examples are implemented to prove the potential of the secure control approach. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0016-0032 1879-2693 0016-0032 |
DOI: | 10.1016/j.jfranklin.2021.02.018 |