Delay-dependent cluster synchronization of time-varying complex dynamical networks with noise via delayed pinning impulsive control

This paper investigates the problem of cluster synchronization of complex dynamical networks with noise and time-varying delays by using a delayed pinning impulsive control scheme. Different from the traditional impulsive control schemes without the effects of input delays, it designs a pinning impu...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Franklin Institute Vol. 358; no. 6; pp. 3193 - 3214
Main Authors Ling, Guang, Liu, Xinzhi, Ge, Ming-Feng, Wu, Yonghong
Format Journal Article
LanguageEnglish
Published Elmsford Elsevier Ltd 01.04.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0016-0032
1879-2693
0016-0032
DOI10.1016/j.jfranklin.2021.02.004

Cover

Loading…
More Information
Summary:This paper investigates the problem of cluster synchronization of complex dynamical networks with noise and time-varying delays by using a delayed pinning impulsive control scheme. Different from the traditional impulsive control schemes without the effects of input delays, it designs a pinning impulsive control scheme to successfully address the aforementioned problem subject to impulsive input delays. By employing a time-dependent Lyapunov function and the mathematical induction, some novel criteria are established to guarantee the cluster synchronization of the noisy complex networks, revealing the closed relationship between the synchronization performance and the related factors, including the impulsive input delays, the number of the pinned nodes, the frequency and strength of the impulsive control, and the noisy perturbations. Some numerical examples and computer simulations are presented to illustrate the effectiveness of the theoretical results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0016-0032
1879-2693
0016-0032
DOI:10.1016/j.jfranklin.2021.02.004