Observed-based adaptive finite-time tracking control for a class of nonstrict-feedback nonlinear systems with input saturation
This paper concentrates upon the problem of adaptive neural finite-time tracking control for uncertain nonstrict-feedback nonlinear systems with input saturation. The design difficulty of non-smooth input saturation nonlinearity is solved by applying a smooth non-affine function to approximate the s...
Saved in:
Published in | Journal of the Franklin Institute Vol. 357; no. 16; pp. 11518 - 11544 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elmsford
Elsevier Ltd
01.11.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper concentrates upon the problem of adaptive neural finite-time tracking control for uncertain nonstrict-feedback nonlinear systems with input saturation. The design difficulty of non-smooth input saturation nonlinearity is solved by applying a smooth non-affine function to approximate the saturation signal. Neural networks, as a kind of specialized function estimators, are used to estimate the uncertain function. Meanwhile, a neural network-based observer is constructed to observe the unavailable states, and thus an observer-based adaptive finite-time tracking control strategy is developed by combining dynamic surface control (DSC) technique and backstepping approach. Furthermore, the stability of the considered system is analyzed via semi-global practical finite-time stability theory. Under the proposed control method, all the signals in the closed-loop system are bounded, and the system output can almost surely track the desired trajectory within a specified bounded error in a finite time. In the end, two examples are adopted to illustrate the validity of our results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0016-0032 1879-2693 0016-0032 |
DOI: | 10.1016/j.jfranklin.2019.07.021 |