Novel blast furnace operation process involving charging with low-titanium vanadium-titanium magnetite carbon composite hot briquette

An innovative process of blast furnace (BF) operation involving charging with low-titanium vanadium-titanium magnetite carbon composite hot briquette (LVTM-CCB) was proposed for utilizing LVTM and conserving energy, In this study, the effect of LVTM-CCB charging ratio on the softening, melting, and...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of minerals, metallurgy and materials Vol. 23; no. 5; pp. 501 - 510
Main Authors Zhao, Wei, Chu, Man-sheng, Wang, Hong-tao, Liu, Zheng-gen, Tang, Ya-ting
Format Journal Article
LanguageEnglish
Published Beijing University of Science and Technology Beijing 01.05.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1674-4799
1869-103X
DOI10.1007/s12613-016-1261-9

Cover

Loading…
More Information
Summary:An innovative process of blast furnace (BF) operation involving charging with low-titanium vanadium-titanium magnetite carbon composite hot briquette (LVTM-CCB) was proposed for utilizing LVTM and conserving energy, In this study, the effect of LVTM-CCB charging ratio on the softening, melting, and dripping behaviors of the mixed burden was explored systemically, and the migration of valu- able elements V and Cr was extensively investigated. The results show that with increasing LVTM-CCB charging ratio, the softening inter- val T40 - T4 increases from 146.1℃ to 266.1℃, and the melting interval To - Ts first decreases from 137.2℃ to 129.5℃ and then increases from 129.5℃ to 133.2℃. Moreover, the cohesive zone becomes narrower and then wider, and its location shifts slightly downward. In addi- tion, the recovery ratios of V and Cr in dripped iron first increase and then decrease, reaching maximum values of 14.552% and 28.163%, respectively, when the charging ratio is 25%. A proper LVTM-CCB charging ratio would improve the softening--melting behavior of the mixed burden; however, Ti(C,N) would be generated rapidly in slag when the charging ratio exceeds 25%, which is not favorable for BF op- eration. When considering the comprehensive softening-melting behavior of the mixed burden and the recovery ratios of V and Cr, the rec- ommended LVTM-CCB charging ratio is 20%.
Bibliography:blast furnace practice; charging; magnetite; briquets
An innovative process of blast furnace (BF) operation involving charging with low-titanium vanadium-titanium magnetite carbon composite hot briquette (LVTM-CCB) was proposed for utilizing LVTM and conserving energy, In this study, the effect of LVTM-CCB charging ratio on the softening, melting, and dripping behaviors of the mixed burden was explored systemically, and the migration of valu- able elements V and Cr was extensively investigated. The results show that with increasing LVTM-CCB charging ratio, the softening inter- val T40 - T4 increases from 146.1℃ to 266.1℃, and the melting interval To - Ts first decreases from 137.2℃ to 129.5℃ and then increases from 129.5℃ to 133.2℃. Moreover, the cohesive zone becomes narrower and then wider, and its location shifts slightly downward. In addi- tion, the recovery ratios of V and Cr in dripped iron first increase and then decrease, reaching maximum values of 14.552% and 28.163%, respectively, when the charging ratio is 25%. A proper LVTM-CCB charging ratio would improve the softening--melting behavior of the mixed burden; however, Ti(C,N) would be generated rapidly in slag when the charging ratio exceeds 25%, which is not favorable for BF op- eration. When considering the comprehensive softening-melting behavior of the mixed burden and the recovery ratios of V and Cr, the rec- ommended LVTM-CCB charging ratio is 20%.
11-5787/TF
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1674-4799
1869-103X
DOI:10.1007/s12613-016-1261-9