A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting
Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exh...
Saved in:
Published in | Nano research Vol. 8; no. 11; pp. 3524 - 3534 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron-hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface. |
---|---|
AbstractList | Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron–hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface. Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn 2 S 4 nanosheets as branches, and TiO 2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron–hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface. |
Author | Qiong Liu Fangli Wu Fengren Cao Lei Chen Xinjian Xie Weichao Wang Wei Tian Liang Li |
AuthorAffiliation | College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China Department of Electronics, Tianjin Key Laborotory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 370001, China |
Author_xml | – sequence: 1 givenname: Qiong surname: Liu fullname: Liu, Qiong organization: College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Soochow University – sequence: 2 givenname: Fangli surname: Wu fullname: Wu, Fangli organization: College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Soochow University – sequence: 3 givenname: Fengren surname: Cao fullname: Cao, Fengren organization: College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Soochow University – sequence: 4 givenname: Lei surname: Chen fullname: Chen, Lei organization: Department of Electronics, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University – sequence: 5 givenname: Xinjian surname: Xie fullname: Xie, Xinjian organization: Department of Electronics, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University – sequence: 6 givenname: Weichao surname: Wang fullname: Wang, Weichao organization: Department of Electronics, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University – sequence: 7 givenname: Wei surname: Tian fullname: Tian, Wei email: wtian@suda.edu.cn organization: College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Soochow University – sequence: 8 givenname: Liang surname: Li fullname: Li, Liang email: lli@suda.edu.cn organization: College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Soochow University |
BookMark | eNp9kEtPAyEUhYmpic8f4I7oeiwwPGaWjfGVNHFh3bghSKGlmYEWmDT-e6n1kbiQzSUn57sHzgkY-eANABcYXWOExDhhQgStEGYVahip2AE4xm3bVKic0fcdE3oETlJaIcQJps0xGCawH7rsVoPX2QUPg4Wv_tGTZwq98iEtjcnjmXsi0LquHz-7T3nrooE2RJjcwjvrtPIZrk0sUq-8NtD45W72puhl5VZlU8zrzuXs_OIMHFrVJXP-NU_By93t7Oahmj7dP95MppWuaZ0rprCYtxohwzUhSqg509TWDW90w7jlFKM3ZvGcsIa2LWNKCMF4O6etJsxgVZ-Cq_3edQybwaQsV2GIvkRKghCmgmIiikvsXTqGlKKxUrusdm3kqFwnMZK7juW-Y1k6lruOJSsk_kOuo-tVfP-XIXsmFa9fmPj7pv-gy6-gZfCLTeF-kjjnbfkLYvUHSpmb7A |
CitedBy_id | crossref_primary_10_1039_C7TA07329A crossref_primary_10_1016_j_jmst_2017_11_054 crossref_primary_10_1016_j_electacta_2023_143249 crossref_primary_10_1021_acssuschemeng_9b06430 crossref_primary_10_1016_j_electacta_2017_07_058 crossref_primary_10_1002_solr_202000430 crossref_primary_10_1039_C8CS00029H crossref_primary_10_1155_2019_5924672 crossref_primary_10_1016_j_jmst_2016_11_017 crossref_primary_10_1007_s12274_017_1606_3 crossref_primary_10_1039_C6CE02579J crossref_primary_10_1007_s11783_017_0957_z crossref_primary_10_1021_acsami_6b08648 crossref_primary_10_1002_admi_201600256 crossref_primary_10_1039_D3EY00073G crossref_primary_10_1039_C6RA10408H crossref_primary_10_1016_j_cattod_2018_11_058 crossref_primary_10_1007_s12274_017_1768_z crossref_primary_10_1007_s40843_016_5054_6 crossref_primary_10_1016_j_ceramint_2022_01_185 crossref_primary_10_1021_acs_inorgchem_8b01137 crossref_primary_10_1002_adfm_201701102 crossref_primary_10_1088_1361_6528_aa749d crossref_primary_10_1039_C9CP06092H crossref_primary_10_1021_acsaem_8b00017 crossref_primary_10_1016_j_apsusc_2017_10_160 crossref_primary_10_1039_C9TA01438A crossref_primary_10_1016_j_apsusc_2016_10_203 crossref_primary_10_1002_smll_202102088 crossref_primary_10_3390_nano12203639 crossref_primary_10_1016_j_ijhydene_2022_07_215 crossref_primary_10_1038_s41598_020_67768_y crossref_primary_10_1007_s10853_021_06008_8 crossref_primary_10_1021_acsami_7b16054 crossref_primary_10_1016_j_rser_2016_11_092 crossref_primary_10_1016_j_jallcom_2019_153545 crossref_primary_10_1016_j_ijhydene_2022_03_111 crossref_primary_10_1016_j_snb_2021_130060 crossref_primary_10_1039_C8NJ02883D crossref_primary_10_1002_ese3_1087 crossref_primary_10_1039_C6NR06969J crossref_primary_10_1088_1361_6528_aad7a0 crossref_primary_10_1016_j_jallcom_2018_09_259 crossref_primary_10_1002_ejic_202400007 crossref_primary_10_1007_s11164_021_04636_y crossref_primary_10_1039_C6TA10511D crossref_primary_10_1039_C8TA03726D crossref_primary_10_1021_acsanm_1c00133 crossref_primary_10_1021_acs_inorgchem_3c03052 crossref_primary_10_1007_s00216_023_04830_4 crossref_primary_10_1016_j_ijhydene_2022_04_100 crossref_primary_10_1039_D1CY02079J crossref_primary_10_1088_1361_6463_ad714f crossref_primary_10_1140_epjp_s13360_024_05285_x |
Cites_doi | 10.1186/1556-276X-6-290 10.1002/smll.200500137 10.1039/c2ee22113f 10.1039/c2nr11952h 10.1021/cr1001645 10.1021/jp804525q 10.1021/jp011941g 10.1557/JMR.1999.0565 10.1021/cm1026078 10.1021/nl8032763 10.1021/jp302741c 10.1016/j.nantod.2013.12.002 10.1021/jp204747w 10.1002/anie.201411200 10.1002/adma.201305299 10.1002/anie.200907173 10.1002/adma.201404543 10.1016/j.nanoen.2011.10.002 10.1021/nl201823u 10.1039/c1jm12432c 10.1126/science.aaa3145 10.1021/nn502121t 10.1038/srep04897 10.1039/b306813g 10.1016/j.nantod.2012.06.002 10.1021/am501940x 10.1021/am500234v 10.1063/1.1654457 10.1016/j.nanoen.2012.10.010 10.1038/238037a0 10.1021/nl3001138 10.1002/adma.201202582 10.1002/anie.201310513 10.1016/j.nanoen.2014.09.005 10.1021/am505015j 10.1021/nl402205f 10.1002/adma.201001784 |
ContentType | Journal Article |
Copyright | Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015 Nano Research is a copyright of Springer, (2015). All Rights Reserved. |
Copyright_xml | – notice: Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015 – notice: Nano Research is a copyright of Springer, (2015). All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 3V. 7QF 7QO 7QQ 7SE 7SR 7U5 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H8G HCIFZ JG9 K9. KB. L7M LK8 M0S M7P P64 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s12274-015-0852-5 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection METADEX Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting |
EISSN | 1998-0000 |
EndPage | 3534 |
ExternalDocumentID | 10_1007_s12274_015_0852_5 666900105 |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 92L 95- 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBYP ACCUX ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACTTH ACVWB ACWMK ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CQIGP CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 ~WA AACDK AAJBT AASML AAYZH ABAKF ABQSL ACPIV ADMLS AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU ALIPV BSONS FRJ H13 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP 7QF 7QO 7QQ 7SE 7SR 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO FR3 GNUQQ H8G JG9 K9. L7M P64 PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c343t-5a17d9c00e6c22a7ad5c4f3868c856f6410b5f1d25849955a777569d49c25e1a3 |
IEDL.DBID | 7X7 |
ISSN | 1998-0124 |
IngestDate | Wed Aug 20 00:31:02 EDT 2025 Tue Jul 01 01:46:46 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Fri Feb 21 02:35:33 EST 2025 Wed Feb 14 10:23:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | photoelectrochemical cells atomic layer deposition water splitting nanosheets multijunction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c343t-5a17d9c00e6c22a7ad5c4f3868c856f6410b5f1d25849955a777569d49c25e1a3 |
Notes | 11-5974/O4 Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron-hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface. water splitting, photoelectrochemical cells, nanosheets, atomic layer deposition, multi junction ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2001474127 |
PQPubID | 326270 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2001474127 crossref_citationtrail_10_1007_s12274_015_0852_5 crossref_primary_10_1007_s12274_015_0852_5 springer_journals_10_1007_s12274_015_0852_5 chongqing_primary_666900105 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationTitleAlternate | Nano Research |
PublicationYear | 2015 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Romeo, Dallaturca, Braglia, Sberveglieri (CR21) 1973; 22 Liu, Li, Gao, Wang, Jiang, Xiong (CR3) 2015; 54 Fujishima, Honda (CR4) 1972; 238 Devarapalli, Debgupta, Pillai, Shelke (CR33) 2014; 4 Liu, Wang, Chen, Moehwald, Fiechter, van der Krol, Wen, Jiang, Antonietti (CR5) 2015; 27 Kim, Jang, Youn, Magesh, Lee (CR7) 2014 Huang, Geyer, Werner, de Boor, Gösele (CR28) 2011; 23 Liu, Lu, Shi, Wu, Guo, Deng, Li (CR39) 2014; 6 Yeh, Teng, Chen, Teng (CR8) 2014; 26 Li, Takata, Cha, Takanabe, Minegishi, Kubota, Domen (CR32) 2013; 25 Xu, He, Liu, Wang, Zhou, Wang (CR37) 2014; 53 Cheng, Fan (CR1) 2012; 7 Sheng, Sun, Shi, Tan, Peng, Liao (CR18) 2014; 8 Shen, Chen, Ren, Kronawitter, Mao, Guo (CR23) 2011; 6 Zhou, Lou, Xie (CR27) 2013; 8 Xie, Fu, Jing, Luan, Feng, Fu (CR6) 2014 Liu, Liu, Liu, Han, Zhang, Huang, Lifshitz, Lee, Zhong, Kang (CR9) 2015; 347 Shi, Wang (CR34) 2012; 5 Seo, Otsuk, Okuno, Ohta, Koumoto (CR20) 1999; 14 Wang, Peng, Hu, Zhang, Hu, Li, Wang, Meng, Lee (CR17) 2014; 14 Noh, Sun, Choi, Niu, Yang, Xu, Jin, Wang (CR11) 2013; 2 Shen, Zhao, Zhou, Guo (CR26) 2008; 112 Peng, Xu, Wu, Yan, Lee, Zhu (CR30) 2005; 1 Bai, Yan, Kang, Hu, Zhang, Zhang (CR24) 2015; 14 Lei, You, Liu, Zhou, Takata, Hara, Domen, Li (CR25) 2003; 17 Bisquert (CR36) 2002; 106 Yu, Lin, Leung, Fan (CR12) 2012; 1 Peng, Wu, Zhu, Thavasi, Ramakrishna, Mhaisalkar (CR22) 2011; 21 Huang, Wang, Chen, Meng, Lv, Chen, Han, Zhang (CR29) 2014; 6 Yu, Chen, Fan, Quan, Zhao, Li, Zhang (CR35) 2010; 49 Hahn, Mullins (CR38) 2010; 22 Hwang, Wu, Hahn, Jeong, Yang (CR16) 2012; 12 Zhang, Liu, Kang (CR10) 2014; 6 Li, Cheng, Li, Liu, Guan, Tay, Fan (CR31) 2012; 116 Chen, Shen, Guo, Mao (CR2) 2010; 110 Peng, Zhu, Mhaisalkar, Ramakrishna (CR19) 2012; 116 Sun, Jing, Li, Zhang, Aguinaldo, Kargar, Madsen, Banu, Zhou, Bando (CR13) 2012; 4 Hwang, Boukai, Yang (CR14) 2009; 9 Shi, Hara, Sun, Anderson, Wang (CR15) 2011; 11 Y. J. Hwang (852_CR16) 2012; 12 C. W. Cheng (852_CR1) 2012; 7 S. H. Shen (852_CR23) 2011; 6 J. Y. Kim (852_CR7) 2014 X. Wang (852_CR17) 2014; 14 N. T. Hahn (852_CR38) 2010; 22 Y. B. Li (852_CR32) 2013; 25 S. Y. Noh (852_CR11) 2013; 2 B. Xu (852_CR37) 2014; 53 Z. P. Huang (852_CR28) 2011; 23 Z. M. Bai (852_CR24) 2015; 14 N. Romeo (852_CR21) 1973; 22 M. Zhou (852_CR27) 2013; 8 T. F. Yeh (852_CR8) 2014; 26 S. J. Peng (852_CR22) 2011; 21 J. Shi (852_CR15) 2011; 11 S. J. Peng (852_CR19) 2012; 116 Q. Liu (852_CR39) 2014; 6 Y. J. Hwang (852_CR14) 2009; 9 M. Z. Xie (852_CR6) 2014 Z. Huang (852_CR29) 2014; 6 J. Shi (852_CR34) 2012; 5 X. Zhang (852_CR10) 2014; 6 D. Liu (852_CR3) 2015; 54 R. Yu (852_CR12) 2012; 1 S. H. Shen (852_CR26) 2008; 112 J. Liu (852_CR5) 2015; 27 X. B. Chen (852_CR2) 2010; 110 H. X. Li (852_CR31) 2012; 116 H. T. Yu (852_CR35) 2010; 49 W. J. Sheng (852_CR18) 2014; 8 A. Fujishima (852_CR4) 1972; 238 K. Sun (852_CR13) 2012; 4 J. Liu (852_CR9) 2015; 347 W. S. Seo (852_CR20) 1999; 14 K. Q. Peng (852_CR30) 2005; 1 J. Bisquert (852_CR36) 2002; 106 Z. B. Lei (852_CR25) 2003; 17 R. R. Devarapalli (852_CR33) 2014; 4 |
References_xml | – volume: 6 start-page: 290 year: 2011 ident: CR23 article-title: Solar light-driven photocatalytic hydrogen evolution over ZnIn S loaded with transition-metal sulfides publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-290 – volume: 1 start-page: 1062 year: 2005 end-page: 1067 ident: CR30 article-title: Aligned single-crystalline Si nanowire arrays for photovoltaic applications publication-title: Small doi: 10.1002/smll.200500137 – start-page: 4 year: 2014 ident: CR7 article-title: A stable and efficient hematite photoanode in a neutral electrolyte for solar water splitting: Towards stability engineering publication-title: Adv. Energy Mater. – volume: 5 start-page: 7918 year: 2012 end-page: 7922 ident: CR34 article-title: Hierarchical TiO -Si nanowire architecture with photoelectrochemical activity under visible light illumination publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22113f – volume: 4 start-page: 1515 year: 2012 end-page: 1521 ident: CR13 article-title: 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H generation publication-title: Nanoscale doi: 10.1039/c2nr11952h – volume: 110 start-page: 6503 year: 2010 end-page: 6570 ident: CR2 article-title: Semiconductor-based photocatalytic hydrogen generation publication-title: Chem. Rev. doi: 10.1021/cr1001645 – start-page: 4 year: 2014 ident: CR6 article-title: Long-lived, visible-light-excited charge carriers of TiO /BiVO nanocomposites and their unexpected photoactivity for water splitting publication-title: Adv. Energy Mater. – volume: 112 start-page: 16148 year: 2008 end-page: 16155 ident: CR26 article-title: Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn S under visible light irradiation publication-title: J. Phys. Chem. C doi: 10.1021/jp804525q – volume: 106 start-page: 325 year: 2002 end-page: 333 ident: CR36 article-title: Theory of the impedance of electron diffusion and recombination in a thin layer publication-title: J. Phys. Chem. B doi: 10.1021/jp011941g – volume: 14 start-page: 4176 year: 1999 end-page: 4181 ident: CR20 article-title: Thermoelectric properties of sintered polycrystalline ZnIn S publication-title: J. Mater. Res. doi: 10.1557/JMR.1999.0565 – volume: 22 start-page: 6474 year: 2010 end-page: 6482 ident: CR38 article-title: Photoelectrochemical performance of nanostructured Ti- and Sn-doped α-Fe O photoanodes publication-title: Chem. Mater. doi: 10.1021/cm1026078 – volume: 9 start-page: 410 year: 2009 end-page: 415 ident: CR14 article-title: High density n-Si/n-TiO core/shell nanowire arrays with enhanced photoactivity publication-title: Nano Lett. doi: 10.1021/nl8032763 – volume: 116 start-page: 13849 year: 2012 end-page: 13857 ident: CR19 article-title: Self-supporting three-dimensional ZnIn S /PVDF-poly(MMAco- MAA) composite mats with hierarchical nanostructures for high photocatalytic activity publication-title: J. Phys. Chem. C doi: 10.1021/jp302741c – volume: 8 start-page: 598 year: 2013 end-page: 618 ident: CR27 article-title: Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities publication-title: Nano Today doi: 10.1016/j.nantod.2013.12.002 – volume: 116 start-page: 3802 year: 2012 end-page: 3807 ident: CR31 article-title: Composition-graded Zn Cd Se@ZnO core-shell nanowire array electrodes for photoelectrochemical hydrogen generation publication-title: J. Phys. Chem. C doi: 10.1021/jp204747w – volume: 54 start-page: 2980 year: 2015 end-page: 2985 ident: CR3 article-title: The nature of photocatalytic “water splitting” on silicon nanowires. Angew publication-title: Chem., Int. Ed. doi: 10.1002/anie.201411200 – volume: 26 start-page: 3297 year: 2014 end-page: 3303 ident: CR8 article-title: Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination publication-title: Adv. Mater. doi: 10.1002/adma.201305299 – volume: 49 start-page: 5106 year: 2010 end-page: 5109 ident: CR35 article-title: A structured macroporous silicon/graphene heterojunction for efficient photoconversion publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200907173 – volume: 27 start-page: 712 year: 2015 end-page: 718 ident: CR5 article-title: Microcontactprinting- assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application publication-title: Adv. Mater. doi: 10.1002/adma.201404543 – volume: 1 start-page: 57 year: 2012 end-page: 72 ident: CR12 article-title: Nanomaterials and nanostructures for efficient light absorption and photovoltaics publication-title: Nano Energy doi: 10.1016/j.nanoen.2011.10.002 – volume: 11 start-page: 3413 year: 2011 end-page: 3419 ident: CR15 article-title: Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes publication-title: Nano Lett. doi: 10.1021/nl201823u – volume: 21 start-page: 15718 year: 2011 end-page: 15726 ident: CR22 article-title: Controlled synthesis and photoelectric application of ZnIn S nanosheet/TiO nanoparticle composite films publication-title: J. Mater. Chem. doi: 10.1039/c1jm12432c – volume: 347 start-page: 970 year: 2015 end-page: 974 ident: CR9 article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway publication-title: Science doi: 10.1126/science.aaa3145 – volume: 8 start-page: 7163 year: 2014 end-page: 7169 ident: CR18 article-title: Quantum dot-sensitized hierarchical micro/ nanowire architecture for photoelectrochemical water splitting publication-title: ACS Nano doi: 10.1021/nn502121t – volume: 4 start-page: 4897 year: 2014 ident: CR33 article-title: C@SiNW/TiO core-shell nanoarrays with sandwiched carbon passivation layer as high efficiency photoelectrode for water splitting publication-title: Sci. Rep. doi: 10.1038/srep04897 – volume: 17 start-page: 2142 year: 2003 end-page: 2143 ident: CR25 article-title: Photocatalytic water reduction under visible light on a novel ZnIn S catalyst synthesized by hydrothermal method publication-title: Chem. Commun. doi: 10.1039/b306813g – volume: 7 start-page: 327 year: 2012 end-page: 343 ident: CR1 article-title: Branched nanowires: Synthesis and energy applications publication-title: Nano Today doi: 10.1016/j.nantod.2012.06.002 – volume: 6 start-page: 10408 year: 2014 end-page: 10414 ident: CR29 article-title: Tungsten sulfide enhancing solar-driven hydrogen production from silicon nanowires publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501940x – volume: 6 start-page: 4480 year: 2014 end-page: 4489 ident: CR10 article-title: 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for highperformance photoelectrochemical water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am500234v – volume: 22 start-page: 21 year: 1973 end-page: 22 ident: CR21 article-title: Charge storage in ZnIn S single crystals publication-title: Appl. Phys. Lett. doi: 10.1063/1.1654457 – volume: 2 start-page: 351 year: 2013 end-page: 360 ident: CR11 article-title: Branched TiO /Si nanostructures for enhanced photoelectrochemical water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.10.010 – volume: 238 start-page: 37 year: 1972 end-page: 38 ident: CR4 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature doi: 10.1038/238037a0 – volume: 12 start-page: 1678 year: 2012 end-page: 1682 ident: CR16 article-title: Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties publication-title: Nano Lett. doi: 10.1021/nl3001138 – volume: 25 start-page: 125 year: 2013 end-page: 131 ident: CR32 article-title: Vertically aligned Ta N nanorod arrays for solar-driven photoelectrochemical water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201202582 – volume: 53 start-page: 2339 year: 2014 end-page: 2343 ident: CR37 article-title: A 1D/2D helical CdS/ZnIn S nano-heterostructure publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201310513 – volume: 14 start-page: 392 year: 2015 end-page: 400 ident: CR24 article-title: Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn S nanosheets coating publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.09.005 – volume: 6 start-page: 17200 year: 2014 end-page: 17207 ident: CR39 article-title: 2D ZnIn S nanosheet/lD TiO nanorod heterostructure arrays for improved photoelectrochemical water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505015j – volume: 14 start-page: 18 year: 2014 end-page: 23 ident: CR17 article-title: Silicon/hematite core/ shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation publication-title: Nano Lett. doi: 10.1021/nl402205f – volume: 23 start-page: 285 year: 2011 end-page: 308 ident: CR28 article-title: Metal-assisted chemical etching of silicon: A review publication-title: Adv. Mater. doi: 10.1002/adma.201001784 – volume: 110 start-page: 6503 year: 2010 ident: 852_CR2 publication-title: Chem. Rev. doi: 10.1021/cr1001645 – volume: 27 start-page: 712 year: 2015 ident: 852_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201404543 – volume: 8 start-page: 7163 year: 2014 ident: 852_CR18 publication-title: ACS Nano doi: 10.1021/nn502121t – volume: 17 start-page: 2142 year: 2003 ident: 852_CR25 publication-title: Chem. Commun. doi: 10.1039/b306813g – volume: 49 start-page: 5106 year: 2010 ident: 852_CR35 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200907173 – volume: 116 start-page: 13849 year: 2012 ident: 852_CR19 publication-title: J. Phys. Chem. C doi: 10.1021/jp302741c – volume: 22 start-page: 6474 year: 2010 ident: 852_CR38 publication-title: Chem. Mater. doi: 10.1021/cm1026078 – volume: 6 start-page: 4480 year: 2014 ident: 852_CR10 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am500234v – volume: 2 start-page: 351 year: 2013 ident: 852_CR11 publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.10.010 – volume: 116 start-page: 3802 year: 2012 ident: 852_CR31 publication-title: J. Phys. Chem. C – volume: 14 start-page: 4176 year: 1999 ident: 852_CR20 publication-title: J. Mater. Res. doi: 10.1557/JMR.1999.0565 – volume: 21 start-page: 15718 year: 2011 ident: 852_CR22 publication-title: J. Mater. Chem. doi: 10.1039/c1jm12432c – volume: 8 start-page: 598 year: 2013 ident: 852_CR27 publication-title: Nano Today doi: 10.1016/j.nantod.2013.12.002 – volume: 6 start-page: 10408 year: 2014 ident: 852_CR29 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501940x – volume: 22 start-page: 21 year: 1973 ident: 852_CR21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1654457 – volume: 106 start-page: 325 year: 2002 ident: 852_CR36 publication-title: J. Phys. Chem. B doi: 10.1021/jp011941g – start-page: 4 volume-title: Adv. Energy Mater. year: 2014 ident: 852_CR6 – volume: 14 start-page: 18 year: 2014 ident: 852_CR17 publication-title: Nano Lett. doi: 10.1021/nl402205f – volume: 53 start-page: 2339 year: 2014 ident: 852_CR37 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201310513 – volume: 26 start-page: 3297 year: 2014 ident: 852_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201305299 – volume: 14 start-page: 392 year: 2015 ident: 852_CR24 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.09.005 – volume: 54 start-page: 2980 year: 2015 ident: 852_CR3 publication-title: Chem., Int. Ed. doi: 10.1002/anie.201411200 – volume: 6 start-page: 290 year: 2011 ident: 852_CR23 publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-6-290 – volume: 238 start-page: 37 year: 1972 ident: 852_CR4 publication-title: Nature doi: 10.1038/238037a0 – volume: 1 start-page: 57 year: 2012 ident: 852_CR12 publication-title: Nano Energy doi: 10.1016/j.nanoen.2011.10.002 – volume: 112 start-page: 16148 year: 2008 ident: 852_CR26 publication-title: J. Phys. Chem. C doi: 10.1021/jp804525q – volume: 4 start-page: 1515 year: 2012 ident: 852_CR13 publication-title: Nanoscale doi: 10.1039/c2nr11952h – volume: 7 start-page: 327 year: 2012 ident: 852_CR1 publication-title: Nano Today doi: 10.1016/j.nantod.2012.06.002 – volume: 6 start-page: 17200 year: 2014 ident: 852_CR39 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505015j – volume: 9 start-page: 410 year: 2009 ident: 852_CR14 publication-title: Nano Lett. doi: 10.1021/nl8032763 – volume: 23 start-page: 285 year: 2011 ident: 852_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201001784 – volume: 1 start-page: 1062 year: 2005 ident: 852_CR30 publication-title: Small doi: 10.1002/smll.200500137 – volume: 11 start-page: 3413 year: 2011 ident: 852_CR15 publication-title: Nano Lett. doi: 10.1021/nl201823u – volume: 4 start-page: 4897 year: 2014 ident: 852_CR33 publication-title: Sci. Rep. doi: 10.1038/srep04897 – volume: 12 start-page: 1678 year: 2012 ident: 852_CR16 publication-title: Nano Lett. doi: 10.1021/nl3001138 – start-page: 4 volume-title: Adv. Energy Mater. year: 2014 ident: 852_CR7 – volume: 347 start-page: 970 year: 2015 ident: 852_CR9 publication-title: Science doi: 10.1126/science.aaa3145 – volume: 25 start-page: 125 year: 2013 ident: 852_CR32 publication-title: Adv. Mater. doi: 10.1002/adma.201202582 – volume: 5 start-page: 7918 year: 2012 ident: 852_CR34 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22113f |
SSID | ssj0062148 |
Score | 2.3544402 |
Snippet | Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3524 |
SubjectTerms | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Carrier transport Chemistry and Materials Science Condensed Matter Physics Electron transfer Materials Science Nanosheets Nanotechnology Nanowires Performance enhancement Quantum efficiency Research Article Silicon Splitting TiO2 Titanium dioxide Water splitting 光解水 增强膜 多结 性能 氧化还原电位 硅纳米线 载流子输运 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9-vOiD-IlzKnnwSSk2adK0j0McU1AfdDB8KWmbusnMptvw3_cua1cVFXwqtMkV7q653_W-CDlhWqUi0IWnAH17QoMa6zzDJACepxHziyDCeueb27DTFdc92SvruCdVtnsVknQndV3sxsGDAtdXegATwINaJqsSXXdQ4i5vVcdvyJkbmTWvHQPrVYUyfyKBDRX6I_v0Cq_7aphqtPktQOrsTnuTbJSAkbbmEt4iS8Zuk_VPbQR3yKxFXV7gM9go5DMdFfTRXll-L6jVdjTpGzM9fxjccVoMhi_n9wN3G7sUU8CsFHM4MGMImEzHdSEBNbaPV_x_iCTfAZbCYkCtLld6l3Tblw8XHa8cp-BlgQimntRM5XHm-ybMONdK5zITIIswyiIZFqFgfioLlnPAJHEspVZKyTDORZxxaZgO9siKHVmzTygrjImj2NdYBxtGKmIyDXSQGo2ITegGaS74moznbTMScJRiN5CzQfyK00lWdiLHgRjDpO6hjIJKQFAJCiqBLaeLLRW9PxYfVuJLyi9yguM2mQD4xFWDnFUirR__SuzgX6ubZI2jerlixUOyMn2bmSNALdP02GnpB4b34cM priority: 102 providerName: Springer Nature |
Title | A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting |
URI | http://lib.cqvip.com/qk/71233X/201511/666900105.html https://link.springer.com/article/10.1007/s12274-015-0852-5 https://www.proquest.com/docview/2001474127 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4EHBAxE2Yf8sCemqLFjx8kTKlO7L21M2yoVXizHcdai4XS0E_8-d27SANL2EkuOcw93F9_v7PsgZJ8ZVYjEVJEC9B0JA2psSotBALwsMhZXSYb5zucX6fFYnE7kpDlwWzRhle2eGDbqsrZ4Rt7H2B8B5o-rz_P7CLtG4e1q00LjOdnE0mUY0qUma4cr5Sx0z1qlkYEha281Q-ocB38MZmUEoAP8MaytMK397T1YjH9tVAc8_7srDSZo9Jq8arAjHayE_YY8c_4teflXRcEt8jCgIUTwB5grZDmtK_rdn3h-Lag3vl5MnVv2b2ZfOa1mdz_717MwjQWLKcBXiuEcGDwE_KbzLqeAOj_FEY8SkeRvQKiwGABsCJt-R8aj4c3hcdR0VohsIpJlJA1TZW7j2KWWc6NMKa0AsaSZzWRapYLFhaxYyQGe5LmURikl07wUueXSMZO8Jxu-9u4DoaxyLs_y2GBKbJqpjMkiMUnhDII3YXpke81XPV9V0NDgM-WhN2ePxC2ntW2KkmNvjDvdlVNGQWkQlEZBafjk0_qTlt4Ti3da8enm51zoTpV65KAVaff6UWIfnya2TV5w1KeQqLhDNpa_HtwuIJZlsRfUEp7Z6GiPbA6Ovp0NYfwyvLi8gtkxH_wB2OXqJQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdY2oIPcAFFmzh2Eh9QVQHLLn1w6FaquBgncdhFxdmyW1X8qf7GznjXDSDRW0-REnsUecYz39jzAHiVmLwUqWmiHNF3JAyKsakrCgLgdVkkcZMWlO-8f5ANj8TnY3m8BhchF4bCKoNO9Iq6bis6I-9T7I9A88fz7dlpRF2j6HY1tNBYisWu_X2OLtv83egD8vc154OP4_fDaNVVIKpSkS4iaZK8VlUc26zi3OSmlpXAX8qKqpBZk4kkLmWT1BxNs1JSmjzPZaZqoSoubWJSpHsLbos0VbSjisGnoPkznvhuXcu0NTSc4RbVp-px9P_wrYwQ5KD_R7UcJq37fooW6m-b2AHdf-5mvckbPID7K6zKdpbC9RDWrHsE9_6oYPgYznaYD0n8geaRWMzahn11I8cPBXPGtfOJtYv-ePqFs2Z68rN_OPWvqUAyQ7jMKHyEgpWQv2zW5TAw6yb0pKNLInmOiBgHI2D2YdpP4OhG1vwprLvW2WfAksZaVajYUApuVuRFIsvUpKU1BBaF6cHG1brq2bJih0YfTfleoD2Iw0rralUEnXpxnOiufDMxSiOjNDFK45Q3V1MCvWsGbwb26ZUymOtOdHvwNrC0-_xfYs-vJ_YS7gzH-3t6b3SwuwF3OcmWT5LchPXFrzO7hWhpUb7wIsrg203viUsZDiCJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ7q0gI-wAUUbezYcXJAqKKsuhQKUltpxcU4jsMuKsmW3arir_HrmPEmG0Cit54i5TGK_I0939jzAHjGrS5kYqtII_uOpEU1tqWjIABRFhmPqySjfOcPh-n-iXw3UZMN-NXlwlBYZbcmhoW6bBztkQ8p9kei-UNXvWrDIj7tjV7PzyLqIEUnrV07jZWKHPifF-i-LV6N9xDr50KM3h6_2Y_aDgORS2SyjJTlusxdHPvUCWG1LZWT-Htp5jKVVqnkcaEqXgo003mulNVaqzQvZe6E8twmKPcaXNeJ4jTH9GTt7KWCh85dqxQ2NKLdiWpI2xPoC-JdFSHhQV-Q6jpMm_rrGVqrv-1jT3r_OacN5m90B263vJXtrhTtLmz4-h7c-qOa4X0432UhPPEbmkqCmzUV-1yPa3EkWW3rZjH1fjk8nn0UrJqdfh8ezcJtKpbMkDozCiWhwCXEms37fAbm6yldaRuTRF4gO8aXkTyHkO0HcHIlY_4QNuum9lvAeOV9nuWxpXTcNNMZV0Vik8JbIo7SDmB7Pa5mvqreYdBfy0Nf0AHE3Ugb1xZEp74cp6Yv5UxAGQTKEFAGP3mx_qSTd8nLOx18pl0YFqZX4wG87CDtH_9X2KPLhT2FGzgbzPvx4cE23BSkWiFfcgc2lz_O_WMkTsviSdBQBl-uekr8BplFJLY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multijunction+of+ZnIn2S4+nanosheet%2FTiO2+film%2FSi+nanowire+for+significant+performance+enhancement+of+water+splitting&rft.jtitle=Nano+research&rft.au=Liu%2C+Qiong&rft.au=Wu%2C+Fangli&rft.au=Cao%2C+Fengren&rft.au=Chen%2C+Lei&rft.date=2015-11-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=8&rft.issue=11&rft.spage=3524&rft.epage=3534&rft_id=info:doi/10.1007%2Fs12274-015-0852-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12274_015_0852_5 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71233X%2F71233X.jpg |