A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting

Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exh...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 8; no. 11; pp. 3524 - 3534
Main Authors Liu, Qiong, Wu, Fangli, Cao, Fengren, Chen, Lei, Xie, Xinjian, Wang, Weichao, Tian, Wei, Li, Liang
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron-hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface.
AbstractList Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron–hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface.
Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn 2 S 4 nanosheets as branches, and TiO 2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron–hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface.
Author Qiong Liu Fangli Wu Fengren Cao Lei Chen Xinjian Xie Weichao Wang Wei Tian Liang Li
AuthorAffiliation College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China Department of Electronics, Tianjin Key Laborotory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 370001, China
Author_xml – sequence: 1
  givenname: Qiong
  surname: Liu
  fullname: Liu, Qiong
  organization: College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Soochow University
– sequence: 2
  givenname: Fangli
  surname: Wu
  fullname: Wu, Fangli
  organization: College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Soochow University
– sequence: 3
  givenname: Fengren
  surname: Cao
  fullname: Cao, Fengren
  organization: College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Soochow University
– sequence: 4
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
  organization: Department of Electronics, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University
– sequence: 5
  givenname: Xinjian
  surname: Xie
  fullname: Xie, Xinjian
  organization: Department of Electronics, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University
– sequence: 6
  givenname: Weichao
  surname: Wang
  fullname: Wang, Weichao
  organization: Department of Electronics, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University
– sequence: 7
  givenname: Wei
  surname: Tian
  fullname: Tian, Wei
  email: wtian@suda.edu.cn
  organization: College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Soochow University
– sequence: 8
  givenname: Liang
  surname: Li
  fullname: Li, Liang
  email: lli@suda.edu.cn
  organization: College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Soochow University
BookMark eNp9kEtPAyEUhYmpic8f4I7oeiwwPGaWjfGVNHFh3bghSKGlmYEWmDT-e6n1kbiQzSUn57sHzgkY-eANABcYXWOExDhhQgStEGYVahip2AE4xm3bVKic0fcdE3oETlJaIcQJps0xGCawH7rsVoPX2QUPg4Wv_tGTZwq98iEtjcnjmXsi0LquHz-7T3nrooE2RJjcwjvrtPIZrk0sUq-8NtD45W72puhl5VZlU8zrzuXs_OIMHFrVJXP-NU_By93t7Oahmj7dP95MppWuaZ0rprCYtxohwzUhSqg509TWDW90w7jlFKM3ZvGcsIa2LWNKCMF4O6etJsxgVZ-Cq_3edQybwaQsV2GIvkRKghCmgmIiikvsXTqGlKKxUrusdm3kqFwnMZK7juW-Y1k6lruOJSsk_kOuo-tVfP-XIXsmFa9fmPj7pv-gy6-gZfCLTeF-kjjnbfkLYvUHSpmb7A
CitedBy_id crossref_primary_10_1039_C7TA07329A
crossref_primary_10_1016_j_jmst_2017_11_054
crossref_primary_10_1016_j_electacta_2023_143249
crossref_primary_10_1021_acssuschemeng_9b06430
crossref_primary_10_1016_j_electacta_2017_07_058
crossref_primary_10_1002_solr_202000430
crossref_primary_10_1039_C8CS00029H
crossref_primary_10_1155_2019_5924672
crossref_primary_10_1016_j_jmst_2016_11_017
crossref_primary_10_1007_s12274_017_1606_3
crossref_primary_10_1039_C6CE02579J
crossref_primary_10_1007_s11783_017_0957_z
crossref_primary_10_1021_acsami_6b08648
crossref_primary_10_1002_admi_201600256
crossref_primary_10_1039_D3EY00073G
crossref_primary_10_1039_C6RA10408H
crossref_primary_10_1016_j_cattod_2018_11_058
crossref_primary_10_1007_s12274_017_1768_z
crossref_primary_10_1007_s40843_016_5054_6
crossref_primary_10_1016_j_ceramint_2022_01_185
crossref_primary_10_1021_acs_inorgchem_8b01137
crossref_primary_10_1002_adfm_201701102
crossref_primary_10_1088_1361_6528_aa749d
crossref_primary_10_1039_C9CP06092H
crossref_primary_10_1021_acsaem_8b00017
crossref_primary_10_1016_j_apsusc_2017_10_160
crossref_primary_10_1039_C9TA01438A
crossref_primary_10_1016_j_apsusc_2016_10_203
crossref_primary_10_1002_smll_202102088
crossref_primary_10_3390_nano12203639
crossref_primary_10_1016_j_ijhydene_2022_07_215
crossref_primary_10_1038_s41598_020_67768_y
crossref_primary_10_1007_s10853_021_06008_8
crossref_primary_10_1021_acsami_7b16054
crossref_primary_10_1016_j_rser_2016_11_092
crossref_primary_10_1016_j_jallcom_2019_153545
crossref_primary_10_1016_j_ijhydene_2022_03_111
crossref_primary_10_1016_j_snb_2021_130060
crossref_primary_10_1039_C8NJ02883D
crossref_primary_10_1002_ese3_1087
crossref_primary_10_1039_C6NR06969J
crossref_primary_10_1088_1361_6528_aad7a0
crossref_primary_10_1016_j_jallcom_2018_09_259
crossref_primary_10_1002_ejic_202400007
crossref_primary_10_1007_s11164_021_04636_y
crossref_primary_10_1039_C6TA10511D
crossref_primary_10_1039_C8TA03726D
crossref_primary_10_1021_acsanm_1c00133
crossref_primary_10_1021_acs_inorgchem_3c03052
crossref_primary_10_1007_s00216_023_04830_4
crossref_primary_10_1016_j_ijhydene_2022_04_100
crossref_primary_10_1039_D1CY02079J
crossref_primary_10_1088_1361_6463_ad714f
crossref_primary_10_1140_epjp_s13360_024_05285_x
Cites_doi 10.1186/1556-276X-6-290
10.1002/smll.200500137
10.1039/c2ee22113f
10.1039/c2nr11952h
10.1021/cr1001645
10.1021/jp804525q
10.1021/jp011941g
10.1557/JMR.1999.0565
10.1021/cm1026078
10.1021/nl8032763
10.1021/jp302741c
10.1016/j.nantod.2013.12.002
10.1021/jp204747w
10.1002/anie.201411200
10.1002/adma.201305299
10.1002/anie.200907173
10.1002/adma.201404543
10.1016/j.nanoen.2011.10.002
10.1021/nl201823u
10.1039/c1jm12432c
10.1126/science.aaa3145
10.1021/nn502121t
10.1038/srep04897
10.1039/b306813g
10.1016/j.nantod.2012.06.002
10.1021/am501940x
10.1021/am500234v
10.1063/1.1654457
10.1016/j.nanoen.2012.10.010
10.1038/238037a0
10.1021/nl3001138
10.1002/adma.201202582
10.1002/anie.201310513
10.1016/j.nanoen.2014.09.005
10.1021/am505015j
10.1021/nl402205f
10.1002/adma.201001784
ContentType Journal Article
Copyright Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Nano Research is a copyright of Springer, (2015). All Rights Reserved.
Copyright_xml – notice: Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
– notice: Nano Research is a copyright of Springer, (2015). All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s12274-015-0852-5
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
METADEX
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting
EISSN 1998-0000
EndPage 3534
ExternalDocumentID 10_1007_s12274_015_0852_5
666900105
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
92L
95-
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBYP
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CQIGP
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
~WA
AACDK
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACPIV
ADMLS
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
BSONS
FRJ
H13
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
ID FETCH-LOGICAL-c343t-5a17d9c00e6c22a7ad5c4f3868c856f6410b5f1d25849955a777569d49c25e1a3
IEDL.DBID 7X7
ISSN 1998-0124
IngestDate Wed Aug 20 00:31:02 EDT 2025
Tue Jul 01 01:46:46 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Fri Feb 21 02:35:33 EST 2025
Wed Feb 14 10:23:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords photoelectrochemical cells
atomic layer deposition
water splitting
nanosheets
multijunction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c343t-5a17d9c00e6c22a7ad5c4f3868c856f6410b5f1d25849955a777569d49c25e1a3
Notes 11-5974/O4
Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron-hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface.
water splitting, photoelectrochemical cells, nanosheets, atomic layer deposition, multi junction
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2001474127
PQPubID 326270
PageCount 11
ParticipantIDs proquest_journals_2001474127
crossref_citationtrail_10_1007_s12274_015_0852_5
crossref_primary_10_1007_s12274_015_0852_5
springer_journals_10_1007_s12274_015_0852_5
chongqing_primary_666900105
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationTitleAlternate Nano Research
PublicationYear 2015
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Romeo, Dallaturca, Braglia, Sberveglieri (CR21) 1973; 22
Liu, Li, Gao, Wang, Jiang, Xiong (CR3) 2015; 54
Fujishima, Honda (CR4) 1972; 238
Devarapalli, Debgupta, Pillai, Shelke (CR33) 2014; 4
Liu, Wang, Chen, Moehwald, Fiechter, van der Krol, Wen, Jiang, Antonietti (CR5) 2015; 27
Kim, Jang, Youn, Magesh, Lee (CR7) 2014
Huang, Geyer, Werner, de Boor, Gösele (CR28) 2011; 23
Liu, Lu, Shi, Wu, Guo, Deng, Li (CR39) 2014; 6
Yeh, Teng, Chen, Teng (CR8) 2014; 26
Li, Takata, Cha, Takanabe, Minegishi, Kubota, Domen (CR32) 2013; 25
Xu, He, Liu, Wang, Zhou, Wang (CR37) 2014; 53
Cheng, Fan (CR1) 2012; 7
Sheng, Sun, Shi, Tan, Peng, Liao (CR18) 2014; 8
Shen, Chen, Ren, Kronawitter, Mao, Guo (CR23) 2011; 6
Zhou, Lou, Xie (CR27) 2013; 8
Xie, Fu, Jing, Luan, Feng, Fu (CR6) 2014
Liu, Liu, Liu, Han, Zhang, Huang, Lifshitz, Lee, Zhong, Kang (CR9) 2015; 347
Shi, Wang (CR34) 2012; 5
Seo, Otsuk, Okuno, Ohta, Koumoto (CR20) 1999; 14
Wang, Peng, Hu, Zhang, Hu, Li, Wang, Meng, Lee (CR17) 2014; 14
Noh, Sun, Choi, Niu, Yang, Xu, Jin, Wang (CR11) 2013; 2
Shen, Zhao, Zhou, Guo (CR26) 2008; 112
Peng, Xu, Wu, Yan, Lee, Zhu (CR30) 2005; 1
Bai, Yan, Kang, Hu, Zhang, Zhang (CR24) 2015; 14
Lei, You, Liu, Zhou, Takata, Hara, Domen, Li (CR25) 2003; 17
Bisquert (CR36) 2002; 106
Yu, Lin, Leung, Fan (CR12) 2012; 1
Peng, Wu, Zhu, Thavasi, Ramakrishna, Mhaisalkar (CR22) 2011; 21
Huang, Wang, Chen, Meng, Lv, Chen, Han, Zhang (CR29) 2014; 6
Yu, Chen, Fan, Quan, Zhao, Li, Zhang (CR35) 2010; 49
Hahn, Mullins (CR38) 2010; 22
Hwang, Wu, Hahn, Jeong, Yang (CR16) 2012; 12
Zhang, Liu, Kang (CR10) 2014; 6
Li, Cheng, Li, Liu, Guan, Tay, Fan (CR31) 2012; 116
Chen, Shen, Guo, Mao (CR2) 2010; 110
Peng, Zhu, Mhaisalkar, Ramakrishna (CR19) 2012; 116
Sun, Jing, Li, Zhang, Aguinaldo, Kargar, Madsen, Banu, Zhou, Bando (CR13) 2012; 4
Hwang, Boukai, Yang (CR14) 2009; 9
Shi, Hara, Sun, Anderson, Wang (CR15) 2011; 11
Y. J. Hwang (852_CR16) 2012; 12
C. W. Cheng (852_CR1) 2012; 7
S. H. Shen (852_CR23) 2011; 6
J. Y. Kim (852_CR7) 2014
X. Wang (852_CR17) 2014; 14
N. T. Hahn (852_CR38) 2010; 22
Y. B. Li (852_CR32) 2013; 25
S. Y. Noh (852_CR11) 2013; 2
B. Xu (852_CR37) 2014; 53
Z. P. Huang (852_CR28) 2011; 23
Z. M. Bai (852_CR24) 2015; 14
N. Romeo (852_CR21) 1973; 22
M. Zhou (852_CR27) 2013; 8
T. F. Yeh (852_CR8) 2014; 26
S. J. Peng (852_CR22) 2011; 21
J. Shi (852_CR15) 2011; 11
S. J. Peng (852_CR19) 2012; 116
Q. Liu (852_CR39) 2014; 6
Y. J. Hwang (852_CR14) 2009; 9
M. Z. Xie (852_CR6) 2014
Z. Huang (852_CR29) 2014; 6
J. Shi (852_CR34) 2012; 5
X. Zhang (852_CR10) 2014; 6
D. Liu (852_CR3) 2015; 54
R. Yu (852_CR12) 2012; 1
S. H. Shen (852_CR26) 2008; 112
J. Liu (852_CR5) 2015; 27
X. B. Chen (852_CR2) 2010; 110
H. X. Li (852_CR31) 2012; 116
H. T. Yu (852_CR35) 2010; 49
W. J. Sheng (852_CR18) 2014; 8
A. Fujishima (852_CR4) 1972; 238
K. Sun (852_CR13) 2012; 4
J. Liu (852_CR9) 2015; 347
W. S. Seo (852_CR20) 1999; 14
K. Q. Peng (852_CR30) 2005; 1
J. Bisquert (852_CR36) 2002; 106
Z. B. Lei (852_CR25) 2003; 17
R. R. Devarapalli (852_CR33) 2014; 4
References_xml – volume: 6
  start-page: 290
  year: 2011
  ident: CR23
  article-title: Solar light-driven photocatalytic hydrogen evolution over ZnIn S loaded with transition-metal sulfides
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-290
– volume: 1
  start-page: 1062
  year: 2005
  end-page: 1067
  ident: CR30
  article-title: Aligned single-crystalline Si nanowire arrays for photovoltaic applications
  publication-title: Small
  doi: 10.1002/smll.200500137
– start-page: 4
  year: 2014
  ident: CR7
  article-title: A stable and efficient hematite photoanode in a neutral electrolyte for solar water splitting: Towards stability engineering
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 7918
  year: 2012
  end-page: 7922
  ident: CR34
  article-title: Hierarchical TiO -Si nanowire architecture with photoelectrochemical activity under visible light illumination
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22113f
– volume: 4
  start-page: 1515
  year: 2012
  end-page: 1521
  ident: CR13
  article-title: 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H generation
  publication-title: Nanoscale
  doi: 10.1039/c2nr11952h
– volume: 110
  start-page: 6503
  year: 2010
  end-page: 6570
  ident: CR2
  article-title: Semiconductor-based photocatalytic hydrogen generation
  publication-title: Chem. Rev.
  doi: 10.1021/cr1001645
– start-page: 4
  year: 2014
  ident: CR6
  article-title: Long-lived, visible-light-excited charge carriers of TiO /BiVO nanocomposites and their unexpected photoactivity for water splitting
  publication-title: Adv. Energy Mater.
– volume: 112
  start-page: 16148
  year: 2008
  end-page: 16155
  ident: CR26
  article-title: Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn S under visible light irradiation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp804525q
– volume: 106
  start-page: 325
  year: 2002
  end-page: 333
  ident: CR36
  article-title: Theory of the impedance of electron diffusion and recombination in a thin layer
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp011941g
– volume: 14
  start-page: 4176
  year: 1999
  end-page: 4181
  ident: CR20
  article-title: Thermoelectric properties of sintered polycrystalline ZnIn S
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1999.0565
– volume: 22
  start-page: 6474
  year: 2010
  end-page: 6482
  ident: CR38
  article-title: Photoelectrochemical performance of nanostructured Ti- and Sn-doped α-Fe O photoanodes
  publication-title: Chem. Mater.
  doi: 10.1021/cm1026078
– volume: 9
  start-page: 410
  year: 2009
  end-page: 415
  ident: CR14
  article-title: High density n-Si/n-TiO core/shell nanowire arrays with enhanced photoactivity
  publication-title: Nano Lett.
  doi: 10.1021/nl8032763
– volume: 116
  start-page: 13849
  year: 2012
  end-page: 13857
  ident: CR19
  article-title: Self-supporting three-dimensional ZnIn S /PVDF-poly(MMAco- MAA) composite mats with hierarchical nanostructures for high photocatalytic activity
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp302741c
– volume: 8
  start-page: 598
  year: 2013
  end-page: 618
  ident: CR27
  article-title: Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2013.12.002
– volume: 116
  start-page: 3802
  year: 2012
  end-page: 3807
  ident: CR31
  article-title: Composition-graded Zn Cd Se@ZnO core-shell nanowire array electrodes for photoelectrochemical hydrogen generation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp204747w
– volume: 54
  start-page: 2980
  year: 2015
  end-page: 2985
  ident: CR3
  article-title: The nature of photocatalytic “water splitting” on silicon nanowires. Angew
  publication-title: Chem., Int. Ed.
  doi: 10.1002/anie.201411200
– volume: 26
  start-page: 3297
  year: 2014
  end-page: 3303
  ident: CR8
  article-title: Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305299
– volume: 49
  start-page: 5106
  year: 2010
  end-page: 5109
  ident: CR35
  article-title: A structured macroporous silicon/graphene heterojunction for efficient photoconversion
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200907173
– volume: 27
  start-page: 712
  year: 2015
  end-page: 718
  ident: CR5
  article-title: Microcontactprinting- assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404543
– volume: 1
  start-page: 57
  year: 2012
  end-page: 72
  ident: CR12
  article-title: Nanomaterials and nanostructures for efficient light absorption and photovoltaics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2011.10.002
– volume: 11
  start-page: 3413
  year: 2011
  end-page: 3419
  ident: CR15
  article-title: Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes
  publication-title: Nano Lett.
  doi: 10.1021/nl201823u
– volume: 21
  start-page: 15718
  year: 2011
  end-page: 15726
  ident: CR22
  article-title: Controlled synthesis and photoelectric application of ZnIn S nanosheet/TiO nanoparticle composite films
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12432c
– volume: 347
  start-page: 970
  year: 2015
  end-page: 974
  ident: CR9
  article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway
  publication-title: Science
  doi: 10.1126/science.aaa3145
– volume: 8
  start-page: 7163
  year: 2014
  end-page: 7169
  ident: CR18
  article-title: Quantum dot-sensitized hierarchical micro/ nanowire architecture for photoelectrochemical water splitting
  publication-title: ACS Nano
  doi: 10.1021/nn502121t
– volume: 4
  start-page: 4897
  year: 2014
  ident: CR33
  article-title: C@SiNW/TiO core-shell nanoarrays with sandwiched carbon passivation layer as high efficiency photoelectrode for water splitting
  publication-title: Sci. Rep.
  doi: 10.1038/srep04897
– volume: 17
  start-page: 2142
  year: 2003
  end-page: 2143
  ident: CR25
  article-title: Photocatalytic water reduction under visible light on a novel ZnIn S catalyst synthesized by hydrothermal method
  publication-title: Chem. Commun.
  doi: 10.1039/b306813g
– volume: 7
  start-page: 327
  year: 2012
  end-page: 343
  ident: CR1
  article-title: Branched nanowires: Synthesis and energy applications
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2012.06.002
– volume: 6
  start-page: 10408
  year: 2014
  end-page: 10414
  ident: CR29
  article-title: Tungsten sulfide enhancing solar-driven hydrogen production from silicon nanowires
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501940x
– volume: 6
  start-page: 4480
  year: 2014
  end-page: 4489
  ident: CR10
  article-title: 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for highperformance photoelectrochemical water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am500234v
– volume: 22
  start-page: 21
  year: 1973
  end-page: 22
  ident: CR21
  article-title: Charge storage in ZnIn S single crystals
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1654457
– volume: 2
  start-page: 351
  year: 2013
  end-page: 360
  ident: CR11
  article-title: Branched TiO /Si nanostructures for enhanced photoelectrochemical water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.10.010
– volume: 238
  start-page: 37
  year: 1972
  end-page: 38
  ident: CR4
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 12
  start-page: 1678
  year: 2012
  end-page: 1682
  ident: CR16
  article-title: Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties
  publication-title: Nano Lett.
  doi: 10.1021/nl3001138
– volume: 25
  start-page: 125
  year: 2013
  end-page: 131
  ident: CR32
  article-title: Vertically aligned Ta N nanorod arrays for solar-driven photoelectrochemical water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202582
– volume: 53
  start-page: 2339
  year: 2014
  end-page: 2343
  ident: CR37
  article-title: A 1D/2D helical CdS/ZnIn S nano-heterostructure
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201310513
– volume: 14
  start-page: 392
  year: 2015
  end-page: 400
  ident: CR24
  article-title: Photoelectrochemical performance enhancement of ZnO photoanodes from ZnIn S nanosheets coating
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.09.005
– volume: 6
  start-page: 17200
  year: 2014
  end-page: 17207
  ident: CR39
  article-title: 2D ZnIn S nanosheet/lD TiO nanorod heterostructure arrays for improved photoelectrochemical water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am505015j
– volume: 14
  start-page: 18
  year: 2014
  end-page: 23
  ident: CR17
  article-title: Silicon/hematite core/ shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation
  publication-title: Nano Lett.
  doi: 10.1021/nl402205f
– volume: 23
  start-page: 285
  year: 2011
  end-page: 308
  ident: CR28
  article-title: Metal-assisted chemical etching of silicon: A review
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001784
– volume: 110
  start-page: 6503
  year: 2010
  ident: 852_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/cr1001645
– volume: 27
  start-page: 712
  year: 2015
  ident: 852_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404543
– volume: 8
  start-page: 7163
  year: 2014
  ident: 852_CR18
  publication-title: ACS Nano
  doi: 10.1021/nn502121t
– volume: 17
  start-page: 2142
  year: 2003
  ident: 852_CR25
  publication-title: Chem. Commun.
  doi: 10.1039/b306813g
– volume: 49
  start-page: 5106
  year: 2010
  ident: 852_CR35
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200907173
– volume: 116
  start-page: 13849
  year: 2012
  ident: 852_CR19
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp302741c
– volume: 22
  start-page: 6474
  year: 2010
  ident: 852_CR38
  publication-title: Chem. Mater.
  doi: 10.1021/cm1026078
– volume: 6
  start-page: 4480
  year: 2014
  ident: 852_CR10
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am500234v
– volume: 2
  start-page: 351
  year: 2013
  ident: 852_CR11
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.10.010
– volume: 116
  start-page: 3802
  year: 2012
  ident: 852_CR31
  publication-title: J. Phys. Chem. C
– volume: 14
  start-page: 4176
  year: 1999
  ident: 852_CR20
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1999.0565
– volume: 21
  start-page: 15718
  year: 2011
  ident: 852_CR22
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm12432c
– volume: 8
  start-page: 598
  year: 2013
  ident: 852_CR27
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2013.12.002
– volume: 6
  start-page: 10408
  year: 2014
  ident: 852_CR29
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501940x
– volume: 22
  start-page: 21
  year: 1973
  ident: 852_CR21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1654457
– volume: 106
  start-page: 325
  year: 2002
  ident: 852_CR36
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp011941g
– start-page: 4
  volume-title: Adv. Energy Mater.
  year: 2014
  ident: 852_CR6
– volume: 14
  start-page: 18
  year: 2014
  ident: 852_CR17
  publication-title: Nano Lett.
  doi: 10.1021/nl402205f
– volume: 53
  start-page: 2339
  year: 2014
  ident: 852_CR37
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201310513
– volume: 26
  start-page: 3297
  year: 2014
  ident: 852_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305299
– volume: 14
  start-page: 392
  year: 2015
  ident: 852_CR24
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.09.005
– volume: 54
  start-page: 2980
  year: 2015
  ident: 852_CR3
  publication-title: Chem., Int. Ed.
  doi: 10.1002/anie.201411200
– volume: 6
  start-page: 290
  year: 2011
  ident: 852_CR23
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-6-290
– volume: 238
  start-page: 37
  year: 1972
  ident: 852_CR4
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 1
  start-page: 57
  year: 2012
  ident: 852_CR12
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2011.10.002
– volume: 112
  start-page: 16148
  year: 2008
  ident: 852_CR26
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp804525q
– volume: 4
  start-page: 1515
  year: 2012
  ident: 852_CR13
  publication-title: Nanoscale
  doi: 10.1039/c2nr11952h
– volume: 7
  start-page: 327
  year: 2012
  ident: 852_CR1
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2012.06.002
– volume: 6
  start-page: 17200
  year: 2014
  ident: 852_CR39
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am505015j
– volume: 9
  start-page: 410
  year: 2009
  ident: 852_CR14
  publication-title: Nano Lett.
  doi: 10.1021/nl8032763
– volume: 23
  start-page: 285
  year: 2011
  ident: 852_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001784
– volume: 1
  start-page: 1062
  year: 2005
  ident: 852_CR30
  publication-title: Small
  doi: 10.1002/smll.200500137
– volume: 11
  start-page: 3413
  year: 2011
  ident: 852_CR15
  publication-title: Nano Lett.
  doi: 10.1021/nl201823u
– volume: 4
  start-page: 4897
  year: 2014
  ident: 852_CR33
  publication-title: Sci. Rep.
  doi: 10.1038/srep04897
– volume: 12
  start-page: 1678
  year: 2012
  ident: 852_CR16
  publication-title: Nano Lett.
  doi: 10.1021/nl3001138
– start-page: 4
  volume-title: Adv. Energy Mater.
  year: 2014
  ident: 852_CR7
– volume: 347
  start-page: 970
  year: 2015
  ident: 852_CR9
  publication-title: Science
  doi: 10.1126/science.aaa3145
– volume: 25
  start-page: 125
  year: 2013
  ident: 852_CR32
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201202582
– volume: 5
  start-page: 7918
  year: 2012
  ident: 852_CR34
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22113f
SSID ssj0062148
Score 2.3544402
Snippet Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3524
SubjectTerms Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Carrier transport
Chemistry and Materials Science
Condensed Matter Physics
Electron transfer
Materials Science
Nanosheets
Nanotechnology
Nanowires
Performance enhancement
Quantum efficiency
Research Article
Silicon
Splitting
TiO2
Titanium dioxide
Water splitting
光解水
增强膜
多结
性能
氧化还原电位
硅纳米线
载流子输运
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9-vOiD-IlzKnnwSSk2adK0j0McU1AfdDB8KWmbusnMptvw3_cua1cVFXwqtMkV7q653_W-CDlhWqUi0IWnAH17QoMa6zzDJACepxHziyDCeueb27DTFdc92SvruCdVtnsVknQndV3sxsGDAtdXegATwINaJqsSXXdQ4i5vVcdvyJkbmTWvHQPrVYUyfyKBDRX6I_v0Cq_7aphqtPktQOrsTnuTbJSAkbbmEt4iS8Zuk_VPbQR3yKxFXV7gM9go5DMdFfTRXll-L6jVdjTpGzM9fxjccVoMhi_n9wN3G7sUU8CsFHM4MGMImEzHdSEBNbaPV_x_iCTfAZbCYkCtLld6l3Tblw8XHa8cp-BlgQimntRM5XHm-ybMONdK5zITIIswyiIZFqFgfioLlnPAJHEspVZKyTDORZxxaZgO9siKHVmzTygrjImj2NdYBxtGKmIyDXSQGo2ITegGaS74moznbTMScJRiN5CzQfyK00lWdiLHgRjDpO6hjIJKQFAJCiqBLaeLLRW9PxYfVuJLyi9yguM2mQD4xFWDnFUirR__SuzgX6ubZI2jerlixUOyMn2bmSNALdP02GnpB4b34cM
  priority: 102
  providerName: Springer Nature
Title A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting
URI http://lib.cqvip.com/qk/71233X/201511/666900105.html
https://link.springer.com/article/10.1007/s12274-015-0852-5
https://www.proquest.com/docview/2001474127
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4EHBAxE2Yf8sCemqLFjx8kTKlO7L21M2yoVXizHcdai4XS0E_8-d27SANL2EkuOcw93F9_v7PsgZJ8ZVYjEVJEC9B0JA2psSotBALwsMhZXSYb5zucX6fFYnE7kpDlwWzRhle2eGDbqsrZ4Rt7H2B8B5o-rz_P7CLtG4e1q00LjOdnE0mUY0qUma4cr5Sx0z1qlkYEha281Q-ocB38MZmUEoAP8MaytMK397T1YjH9tVAc8_7srDSZo9Jq8arAjHayE_YY8c_4teflXRcEt8jCgIUTwB5grZDmtK_rdn3h-Lag3vl5MnVv2b2ZfOa1mdz_717MwjQWLKcBXiuEcGDwE_KbzLqeAOj_FEY8SkeRvQKiwGABsCJt-R8aj4c3hcdR0VohsIpJlJA1TZW7j2KWWc6NMKa0AsaSZzWRapYLFhaxYyQGe5LmURikl07wUueXSMZO8Jxu-9u4DoaxyLs_y2GBKbJqpjMkiMUnhDII3YXpke81XPV9V0NDgM-WhN2ePxC2ntW2KkmNvjDvdlVNGQWkQlEZBafjk0_qTlt4Ti3da8enm51zoTpV65KAVaff6UWIfnya2TV5w1KeQqLhDNpa_HtwuIJZlsRfUEp7Z6GiPbA6Ovp0NYfwyvLi8gtkxH_wB2OXqJQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdY2oIPcAFFmzh2Eh9QVQHLLn1w6FaquBgncdhFxdmyW1X8qf7GznjXDSDRW0-REnsUecYz39jzAHiVmLwUqWmiHNF3JAyKsakrCgLgdVkkcZMWlO-8f5ANj8TnY3m8BhchF4bCKoNO9Iq6bis6I-9T7I9A88fz7dlpRF2j6HY1tNBYisWu_X2OLtv83egD8vc154OP4_fDaNVVIKpSkS4iaZK8VlUc26zi3OSmlpXAX8qKqpBZk4kkLmWT1BxNs1JSmjzPZaZqoSoubWJSpHsLbos0VbSjisGnoPkznvhuXcu0NTSc4RbVp-px9P_wrYwQ5KD_R7UcJq37fooW6m-b2AHdf-5mvckbPID7K6zKdpbC9RDWrHsE9_6oYPgYznaYD0n8geaRWMzahn11I8cPBXPGtfOJtYv-ePqFs2Z68rN_OPWvqUAyQ7jMKHyEgpWQv2zW5TAw6yb0pKNLInmOiBgHI2D2YdpP4OhG1vwprLvW2WfAksZaVajYUApuVuRFIsvUpKU1BBaF6cHG1brq2bJih0YfTfleoD2Iw0rralUEnXpxnOiufDMxSiOjNDFK45Q3V1MCvWsGbwb26ZUymOtOdHvwNrC0-_xfYs-vJ_YS7gzH-3t6b3SwuwF3OcmWT5LchPXFrzO7hWhpUb7wIsrg203viUsZDiCJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ7q0gI-wAUUbezYcXJAqKKsuhQKUltpxcU4jsMuKsmW3arir_HrmPEmG0Cit54i5TGK_I0939jzAHjGrS5kYqtII_uOpEU1tqWjIABRFhmPqySjfOcPh-n-iXw3UZMN-NXlwlBYZbcmhoW6bBztkQ8p9kei-UNXvWrDIj7tjV7PzyLqIEUnrV07jZWKHPifF-i-LV6N9xDr50KM3h6_2Y_aDgORS2SyjJTlusxdHPvUCWG1LZWT-Htp5jKVVqnkcaEqXgo003mulNVaqzQvZe6E8twmKPcaXNeJ4jTH9GTt7KWCh85dqxQ2NKLdiWpI2xPoC-JdFSHhQV-Q6jpMm_rrGVqrv-1jT3r_OacN5m90B263vJXtrhTtLmz4-h7c-qOa4X0432UhPPEbmkqCmzUV-1yPa3EkWW3rZjH1fjk8nn0UrJqdfh8ezcJtKpbMkDozCiWhwCXEms37fAbm6yldaRuTRF4gO8aXkTyHkO0HcHIlY_4QNuum9lvAeOV9nuWxpXTcNNMZV0Vik8JbIo7SDmB7Pa5mvqreYdBfy0Nf0AHE3Ugb1xZEp74cp6Yv5UxAGQTKEFAGP3mx_qSTd8nLOx18pl0YFqZX4wG87CDtH_9X2KPLhT2FGzgbzPvx4cE23BSkWiFfcgc2lz_O_WMkTsviSdBQBl-uekr8BplFJLY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multijunction+of+ZnIn2S4+nanosheet%2FTiO2+film%2FSi+nanowire+for+significant+performance+enhancement+of+water+splitting&rft.jtitle=Nano+research&rft.au=Liu%2C+Qiong&rft.au=Wu%2C+Fangli&rft.au=Cao%2C+Fengren&rft.au=Chen%2C+Lei&rft.date=2015-11-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=8&rft.issue=11&rft.spage=3524&rft.epage=3534&rft_id=info:doi/10.1007%2Fs12274-015-0852-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12274_015_0852_5
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71233X%2F71233X.jpg