A multijunction of ZnIn2S4 nanosheet/TiO2 film/Si nanowire for significant performance enhancement of water splitting
Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exh...
Saved in:
Published in | Nano research Vol. 8; no. 11; pp. 3524 - 3534 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron-hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface. |
---|---|
Bibliography: | 11-5974/O4 Photoelectrodes with a specific structure and composition have been proposed for improving the efficiency of solar water splitting. Here, a novel multijunction structure was fabricated, with Si nanowires as cores, ZnIn2S4 nanosheets as branches, and TiO2 films as sandwiched layers. This junction exhibited a superior photoelectrochemical performance with a maximum photoconversion efficiency of 0.51%, which is 795 and 64 times higher than that of a bare Si wafer and nanowires, respectively. The large enhancement was attributed to the effective electron-hole separation and fast excited carrier transport within the multijunctions resulting from their favorable energy band alignments with water redox potentials, and to the enlarged contact area for facilitating the electron transfer at the multijunction/electrolyte interface. water splitting, photoelectrochemical cells, nanosheets, atomic layer deposition, multi junction ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-015-0852-5 |