Comparative Analysis of Optimized Output Regulation of A SISO Nonlinear System Using Different Sliding Manifolds
This paper presents the design of sliding mode controller for the output regulation of single input single output (SISO) nonlinear systems. The sliding surfaces are designed to force the error dynamics to follow proportional (P), proportional integral (PI) and proportional integral derivative (PID)...
Saved in:
Published in | International journal of automation and computing Vol. 14; no. 4; pp. 450 - 462 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Institute of Automation, Chinese Academy of Sciences
01.08.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1476-8186 2153-182X 1751-8520 2153-1838 |
DOI | 10.1007/s11633-017-1078-7 |
Cover
Loading…
Summary: | This paper presents the design of sliding mode controller for the output regulation of single input single output (SISO) nonlinear systems. The sliding surfaces are designed to force the error dynamics to follow proportional (P), proportional integral (PI) and proportional integral derivative (PID) dynamics. The controller parameters are obtained using probabilistic particle swarm optimization technique. A judicious selection of various sliding surfaces based on the relative degree of the systems is also elaborated. A detailed comparison of the output regulation for various systems with different relative degree is presented. Numerical simulation shows the effectiveness of the proposed method and robustness of the sliding mode controller. |
---|---|
Bibliography: | Higher order sliding mode, nonlinear system, sliding manifolds, relative degree, probabilistic particle swarm optimization. 11-5350/TP This paper presents the design of sliding mode controller for the output regulation of single input single output (SISO) nonlinear systems. The sliding surfaces are designed to force the error dynamics to follow proportional (P), proportional integral (PI) and proportional integral derivative (PID) dynamics. The controller parameters are obtained using probabilistic particle swarm optimization technique. A judicious selection of various sliding surfaces based on the relative degree of the systems is also elaborated. A detailed comparison of the output regulation for various systems with different relative degree is presented. Numerical simulation shows the effectiveness of the proposed method and robustness of the sliding mode controller. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1476-8186 2153-182X 1751-8520 2153-1838 |
DOI: | 10.1007/s11633-017-1078-7 |