Reactive Oxygen Species-mediated β-Cleavage of the Prion Protein in the Cellular Response to Oxidative Stress

The cellular prion protein (PrPC) is critical for the development of prion diseases. However, the physiological role of PrPC is less clear, although a role in the cellular resistance to oxidative stress has been proposed. PrPC is cleaved at the end of the copper-binding octapeptide repeats through t...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 280; no. 43; pp. 35914 - 35921
Main Authors Watt, Nicole T., Taylor, David R., Gillott, Andrew, Thomas, Daniel A., Perera, W. Sumudhu S., Hooper, Nigel M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 28.10.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The cellular prion protein (PrPC) is critical for the development of prion diseases. However, the physiological role of PrPC is less clear, although a role in the cellular resistance to oxidative stress has been proposed. PrPC is cleaved at the end of the copper-binding octapeptide repeats through the action of reactive oxygen species (ROS), a process termed β-cleavage. Here we show that ROS-mediated β-cleavage of cell surface PrPC occurs within minutes and was inhibited by the hydroxyl radical quencher dimethyl sulfoxide and by an antibody against the octapeptide repeats. A construct of PrP lacking the octapeptide repeats, PrPΔoct, failed to undergo ROS-mediated β-cleavage, as did two mutant forms of PrP, PG14 and A116V, associated with human prion diseases. As compared with cells expressing wild type PrP, when challenged with H2O2 and Cu2+, cells expressing PrPΔoct, PG14, or A116V had reduced viability and glutathione peroxidase activity and increased intracellular free radicals. Thus, lack of ROS-mediated β-cleavage of PrP correlated with the sensitivity of the cells to oxidative stress. These data indicate that the β-cleavage of PrPC is an early and critical event in the mechanism by which PrP protects cells against oxidative stress.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M507327200