Super-twisting observer-based sliding mode control with fuzzy variable gains and its applications to fully-actuated hexarotors

In this paper, we consider the super-twisting observer-based sliding mode control algorithm with fuzzy variable gains (STOSMC) for the fully-actuated hexarotor. Our hexarotor has full actuation due to six titled propellers that allows to control position and orientation (attitude) simultaneously, an...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Franklin Institute Vol. 356; no. 8; pp. 4270 - 4303
Main Authors Nguyen, Ngo Phong, Kim, Wonhee, Moon, Jun
Format Journal Article
LanguageEnglish
Published Elmsford Elsevier Ltd 01.05.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0016-0032
1879-2693
0016-0032
DOI10.1016/j.jfranklin.2019.03.005

Cover

More Information
Summary:In this paper, we consider the super-twisting observer-based sliding mode control algorithm with fuzzy variable gains (STOSMC) for the fully-actuated hexarotor. Our hexarotor has full actuation due to six titled propellers that allows to control position and orientation (attitude) simultaneously, and resolves the singularity problem of the rotational matrix by using the quaternion modeling framework. We show that the proposed STOSMC for the hexarotor guarantees finite-time convergence of the estimation error and asymptotic stability of the hexarotor. In simulations, we demonstrate the nonsingularity and fully-actuated control performance of the hexarotor by considering extreme position and attitude control scenarios. Moreover, the simulation results show that the hexarotor achieves the fast and precise tracking performance to the desired position and the desired attitude and the chattering phenomenon is reduced compared with the fixed-gains observer-based super-twisting sliding mode control due to the fuzzy mechanism.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0016-0032
1879-2693
0016-0032
DOI:10.1016/j.jfranklin.2019.03.005