Leaderless consensus control of nonlinear multi-agent systems under directed topologies subject to input saturation using adaptive event-triggered mechanism

This paper deals with the leaderless consensus controller design for nonlinear multi-agent systems (MASs) subject to the input saturation nonlinearity by using an event-triggered (ET) mechanism. An adaptive ET scheme has been established with variable threshold parameter for attaining an efficient c...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Franklin Institute Vol. 358; no. 12; pp. 6217 - 6239
Main Authors Rehan, Muhammad, Tufail, Muhammad, Ahmed, Shakeel
Format Journal Article
LanguageEnglish
Published Elmsford Elsevier Ltd 01.08.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper deals with the leaderless consensus controller design for nonlinear multi-agent systems (MASs) subject to the input saturation nonlinearity by using an event-triggered (ET) mechanism. An adaptive ET scheme has been established with variable threshold parameter for attaining an efficient control bandwidth. Linear parameter varying (LPV) formulation and region of stability investigation for dealing with the inherent nonlinearity and input saturation, respectively, are focused in the study. A consensus controller design condition has been formulated to ensure the regional stability, to determine the consensus protocol gains, to choose the parameters of ET mechanism, and to select an appropriate adaptation law for ET control. Elimination of Zeno behavior, based on nonlinearity bounds, for the adaptive ET mechanism has been ensured through a rigorous analysis. In contrast to excising methods, a directed communication topology, adaptive ET mechanism, and removal of Zeno behavior as well as elimination of the windup effect of saturation have been considered in our work. A simulation study has been provided for six robotic agents and comparison results with the existing method are revealed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0016-0032
1879-2693
0016-0032
DOI:10.1016/j.jfranklin.2021.06.014