Prediction of the electronic structure of single-walled black phosphorus nanotubes
Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional theory based calculations that black phosphorus (BP) nanotubes are achievable. Moreover, the electronic properties of BP nanotubes are explore...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 18; no. 22; pp. 15177 - 15181 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional theory based calculations that black phosphorus (BP) nanotubes are achievable. Moreover, the electronic properties of BP nanotubes are explored. In contrast to their monolayer and bulk counterparts, most BP nanotubes possess indirect band gaps. In addition, strong anisotropic electronic behaviors are observed between zigzag and armchair nanotubes. Semiconducting to semi-metallic transition occurs only for zigzag tubes when its diameter shrinks to ∼1.5 nm. This difference is strongly related to the bond bending after the formation of the nanotubes which governs the s-p hybridization, as well as electron distribution in different p orbitals and this eventually determines the electronic structure of BP nanotubes.
Size dependent electronic structure of black phosphorus nanotubes. |
---|---|
AbstractList | Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional theory based calculations that black phosphorus (BP) nanotubes are achievable. Moreover, the electronic properties of BP nanotubes are explored. In contrast to their monolayer and bulk counterparts, most BP nanotubes possess indirect band gaps. In addition, strong anisotropic electronic behaviors are observed between zigzag and armchair nanotubes. Semiconducting to semi-metallic transition occurs only for zigzag tubes when its diameter shrinks to ∼1.5 nm. This difference is strongly related to the bond bending after the formation of the nanotubes which governs the s-p hybridization, as well as electron distribution in different p orbitals and this eventually determines the electronic structure of BP nanotubes. Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional theory based calculations that black phosphorus (BP) nanotubes are achievable. Moreover, the electronic properties of BP nanotubes are explored. In contrast to their monolayer and bulk counterparts, most BP nanotubes possess indirect band gaps. In addition, strong anisotropic electronic behaviors are observed between zigzag and armchair nanotubes. Semiconducting to semi-metallic transition occurs only for zigzag tubes when its diameter shrinks to ∼1.5 nm. This difference is strongly related to the bond bending after the formation of the nanotubes which governs the s-p hybridization, as well as electron distribution in different p orbitals and this eventually determines the electronic structure of BP nanotubes. Size dependent electronic structure of black phosphorus nanotubes. Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional theory based calculations that black phosphorus (BP) nanotubes are achievable. Moreover, the electronic properties of BP nanotubes are explored. In contrast to their monolayer and bulk counterparts, most BP nanotubes possess indirect band gaps. In addition, strong anisotropic electronic behaviors are observed between zigzag and armchair nanotubes. Semiconducting to semi-metallic transition occurs only for zigzag tubes when its diameter shrinks to similar to 1.5 nm. This difference is strongly related to the bond bending after the formation of the nanotubes which governs the s-p hybridization, as well as electron distribution in different p orbitals and this eventually determines the electronic structure of BP nanotubes. |
Author | Tao, Junguang Chen, Guifeng Guan, Lixiu |
AuthorAffiliation | School of Science School of Materials Science and Engineering Key Lab. for New Type of Functional Materials in Hebei Province Hebei University of Technology |
AuthorAffiliation_xml | – sequence: 0 name: Hebei University of Technology – sequence: 0 name: Key Lab. for New Type of Functional Materials in Hebei Province – sequence: 0 name: School of Materials Science and Engineering – sequence: 0 name: School of Science |
Author_xml | – sequence: 1 givenname: Lixiu surname: Guan fullname: Guan, Lixiu – sequence: 2 givenname: Guifeng surname: Chen fullname: Chen, Guifeng – sequence: 3 givenname: Junguang surname: Tao fullname: Tao, Junguang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27198550$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1LxDAQBuAgK36sXrwrPYpQTZqkSY5S_IIFRfRc0uzErWabNUkR_71dV1cQwUNIIM8Mw7y7aNT5DhA6IPiUYKrOTGkWmEhMzQbaIaykucKSjdZvUW6j3RifMcaEE7qFtgtBlOQc76D7uwDT1qTWd5m3WZpBBg5MCr5rTRZT6E3qAyz_Yts9OcjftHMwzRqnzUu2mPk4nNDHrNOdT30DcQ9tWu0i7H_dY_R4efFQXeeT26ub6nySG8qKlFtcCGDCCkWmXDImrbSmsazhwErgquCsFFSIhkiriRZCFoVQxeA4M0ZjOkbHq76L4F97iKmet9GAc7oD38eaSMpLroTg_1OhqBrmKelAj75o38xhWi9CO9fhvf5e2QDwCpjgYwxga9MmvVxgCrp1NcH1MpW6Kqu7z1SqoeTkV8l31z_x4QqHaNbuJ2L6Aap-laU |
CitedBy_id | crossref_primary_10_1016_j_physe_2023_115745 crossref_primary_10_1007_s00339_017_0860_2 crossref_primary_10_1016_j_mtcomm_2022_105253 crossref_primary_10_20964_2019_03_43 crossref_primary_10_3390_ijms19124085 crossref_primary_10_1016_j_mtcomm_2022_103434 crossref_primary_10_1039_D2RA04969D crossref_primary_10_1016_j_commatsci_2019_01_020 crossref_primary_10_1016_j_apsusc_2019_04_251 crossref_primary_10_1021_acs_jpclett_6b02271 crossref_primary_10_1016_j_cclet_2021_11_030 |
Cites_doi | 10.1016/S0009-2614(99)00045-2 10.1126/science.269.5226.966 10.1021/nl5029717 10.1103/PhysRevB.90.085402 10.1038/nmat1849 10.1038/ncomms5651 10.1038/ncomms3341 10.1039/C4NR04829F 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.90.081408 10.1063/1.2842386 10.1088/0957-4484/26/41/415702 10.1038/ncomms5727 10.1209/epl/i2003-10043-1 10.1038/nnano.2012.193 10.1038/ncomms5475 10.1103/PhysRevLett.112.176801 10.1063/1.4885215 10.1016/0038-1098(84)90444-7 10.1038/ncomms7485 10.1021/nn501226z 10.1126/science.1102896 10.1088/0957-4484/26/5/055701 10.1038/nature04233 10.1038/nnano.2014.35 10.1103/PhysRevB.50.17953 10.1021/nl500935z 10.1039/c0ee00533a 10.1103/PhysRevLett.97.187401 10.1073/pnas.0502848102 10.1038/nnano.2014.176 10.1021/acs.jpcc.5b00176 10.1126/science.1184167 10.1021/nn5027388 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/c6cp01803c |
DatabaseName | CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1463-9084 |
EndPage | 15181 |
ExternalDocumentID | 27198550 10_1039_C6CP01803C c6cp01803c |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29O 2WC 4.4 53G 705 70~ 7~J 87K AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 D0L DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDZ J3G J3I M4U N9A NHB O9- OK1 P2P R7B R7C RAOCF RCNCU RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UCJ UHB VH6 WH7 YNT 0UZ 1TJ 6TJ 71~ 9M8 AAYXX ACHDF ACRPL ADNMO AFFNX AFRZK AGQPQ AHGXI AKMSF ALSGL ALUYA ANLMG ASPBG AVWKF BBWZM CAG CITATION COF EEHRC FEDTE HVGLF H~9 IDY J3H L-8 MVM NDZJH R56 RCLXC RIG XJT XOL ZCG NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c342t-f027e47f791d58448f8fcbf4b5e46e5925467377b18fa1a7782279248f54cca03 |
ISSN | 1463-9076 |
IngestDate | Fri Jul 11 02:32:43 EDT 2025 Fri Jul 11 05:31:00 EDT 2025 Wed Feb 19 02:42:36 EST 2025 Tue Jul 01 02:46:21 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Tue Dec 17 20:59:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c342t-f027e47f791d58448f8fcbf4b5e46e5925467377b18fa1a7782279248f54cca03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 27198550 |
PQID | 1793902763 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1835659775 proquest_miscellaneous_1793902763 crossref_citationtrail_10_1039_C6CP01803C rsc_primary_c6cp01803c pubmed_primary_27198550 crossref_primary_10_1039_C6CP01803C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 6 year: 2016 text: 20160601 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physical chemistry chemical physics : PCCP |
PublicationTitleAlternate | Phys Chem Chem Phys |
PublicationYear | 2016 |
References | Qiao (C6CP01803C-(cit12)/*[position()=1]) 2014; 5 Cabria (C6CP01803C-(cit28)/*[position()=1]) 2004; 65 Seifert (C6CP01803C-(cit27)/*[position()=1]) 2000; 318 Peng (C6CP01803C-(cit25)/*[position()=1]) 2014; 90 Chopra (C6CP01803C-(cit21)/*[position()=1]) 1995; 269 Wang (C6CP01803C-(cit5)/*[position()=1]) 2012; 7 Jiang (C6CP01803C-(cit15)/*[position()=1]) 2015; 26 Li (C6CP01803C-(cit9)/*[position()=1]) 2014; 9 Rodin (C6CP01803C-(cit8)/*[position()=1]) 2014; 112 Jiang (C6CP01803C-(cit16)/*[position()=1]) 2014; 5 Kawamura (C6CP01803C-(cit30)/*[position()=1]) 1984; 49 Buscema (C6CP01803C-(cit14)/*[position()=1]) 2014; 5 Ferrari (C6CP01803C-(cit2)/*[position()=1]) 2006; 97 Wei (C6CP01803C-(cit26)/*[position()=1]) 2014; 104 Lee (C6CP01803C-(cit7)/*[position()=1]) 2010; 328 Myahkostupov (C6CP01803C-(cit22)/*[position()=1]) 2011; 4 Hu (C6CP01803C-(cit29)/*[position()=1]) 2015; 26 Wang (C6CP01803C-(cit18)/*[position()=1]) 2014; 14 Novoselov (C6CP01803C-(cit6)/*[position()=1]) 2005; 102 Novoselov (C6CP01803C-(cit1)/*[position()=1]) 2005; 438 Xiang (C6CP01803C-(cit20)/*[position()=1]) 2015; 6 Deng (C6CP01803C-(cit13)/*[position()=1]) 2014; 8 Blöchl (C6CP01803C-(cit31)/*[position()=1]) 1994; 50 Jiang (C6CP01803C-(cit11)/*[position()=1]) 2014; 9 Perdew (C6CP01803C-(cit32)/*[position()=1]) 1996; 77 Gobre (C6CP01803C-(cit33)/*[position()=1]) 2013; 4 Liu (C6CP01803C-(cit10)/*[position()=1]) 2014; 8 She (C6CP01803C-(cit23)/*[position()=1]) 2008; 92 Novoselov (C6CP01803C-(cit4)/*[position()=1]) 2004; 306 Li (C6CP01803C-(cit24)/*[position()=1]) 2015; 119 Wang (C6CP01803C-(cit19)/*[position()=1]) 2015; 7 Geim (C6CP01803C-(cit3)/*[position()=1]) 2007; 6 Low (C6CP01803C-(cit17)/*[position()=1]) 2014; 90 Fei (C6CP01803C-(cit34)/*[position()=1]) 2014; 14 |
References_xml | – volume: 318 start-page: 355 year: 2000 ident: C6CP01803C-(cit27)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)00045-2 – volume: 269 start-page: 966 year: 1995 ident: C6CP01803C-(cit21)/*[position()=1] publication-title: Science doi: 10.1126/science.269.5226.966 – volume: 14 start-page: 6424 year: 2014 ident: C6CP01803C-(cit18)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5029717 – volume: 90 start-page: 085402 year: 2014 ident: C6CP01803C-(cit25)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.90.085402 – volume: 6 start-page: 183 year: 2007 ident: C6CP01803C-(cit3)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 5 start-page: 4651 year: 2014 ident: C6CP01803C-(cit14)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5651 – volume: 4 start-page: 2341 year: 2013 ident: C6CP01803C-(cit33)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3341 – volume: 7 start-page: 877 year: 2015 ident: C6CP01803C-(cit19)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR04829F – volume: 77 start-page: 3865 year: 1996 ident: C6CP01803C-(cit32)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 90 start-page: 081408 year: 2014 ident: C6CP01803C-(cit17)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.90.081408 – volume: 92 start-page: 053111 year: 2008 ident: C6CP01803C-(cit23)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.2842386 – volume: 26 start-page: 415702 year: 2015 ident: C6CP01803C-(cit29)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/26/41/415702 – volume: 5 start-page: 4727 year: 2014 ident: C6CP01803C-(cit16)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5727 – volume: 65 start-page: 82 year: 2004 ident: C6CP01803C-(cit28)/*[position()=1] publication-title: Europhys. Lett. doi: 10.1209/epl/i2003-10043-1 – volume: 7 start-page: 699 year: 2012 ident: C6CP01803C-(cit5)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 5 start-page: 4475 year: 2014 ident: C6CP01803C-(cit12)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5475 – volume: 112 start-page: 176801 year: 2014 ident: C6CP01803C-(cit8)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.176801 – volume: 104 start-page: 251915 year: 2014 ident: C6CP01803C-(cit26)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4885215 – volume: 49 start-page: 879 year: 1984 ident: C6CP01803C-(cit30)/*[position()=1] publication-title: Solid State Commun. doi: 10.1016/0038-1098(84)90444-7 – volume: 6 start-page: 6485 year: 2015 ident: C6CP01803C-(cit20)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7485 – volume: 8 start-page: 4033 year: 2014 ident: C6CP01803C-(cit10)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn501226z – volume: 306 start-page: 666 year: 2004 ident: C6CP01803C-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1102896 – volume: 26 start-page: 055701 year: 2015 ident: C6CP01803C-(cit15)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/0957-4484/26/5/055701 – volume: 438 start-page: 197 year: 2005 ident: C6CP01803C-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature04233 – volume: 9 start-page: 372 year: 2014 ident: C6CP01803C-(cit9)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.35 – volume: 50 start-page: 17953 year: 1994 ident: C6CP01803C-(cit31)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.50.17953 – volume: 14 start-page: 2884 year: 2014 ident: C6CP01803C-(cit34)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl500935z – volume: 4 start-page: 998 year: 2011 ident: C6CP01803C-(cit22)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00533a – volume: 97 start-page: 187401 year: 2006 ident: C6CP01803C-(cit2)/*[position()=1] publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.187401 – volume: 102 start-page: 10451 year: 2005 ident: C6CP01803C-(cit6)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0502848102 – volume: 9 start-page: 825 year: 2014 ident: C6CP01803C-(cit11)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.176 – volume: 119 start-page: 6405 year: 2015 ident: C6CP01803C-(cit24)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b00176 – volume: 328 start-page: 76 year: 2010 ident: C6CP01803C-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.1184167 – volume: 8 start-page: 8292 year: 2014 ident: C6CP01803C-(cit13)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn5027388 |
SSID | ssj0001513 |
Score | 2.248907 |
Snippet | Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15177 |
SubjectTerms | Anisotropy Bend strength Electronic structure Electronics Energy gaps (solid state) Nanotubes Orbitals Phosphorus |
Title | Prediction of the electronic structure of single-walled black phosphorus nanotubes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27198550 https://www.proquest.com/docview/1793902763 https://www.proquest.com/docview/1835659775 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4AXxNegfCkIXhAKJLETJ49T1DFQGRVKpb5FjmdrlaakahuB-Ou5i-2YqRMaPDRKzpGT-i7n3519d4S8BUwsCpbqUDFKQ0ZFEjaNyEMdC8DnItXFUO7t61l2umBflunSx54M0SW75oP8dW1cyf9wFWjAV4yS_QfOjp0CAc6Bv3AEDsPxRjyeb3CZxWG-YXuGr2pjMsPi-gC0oUfgUoU_sHIKQE702r1fX3Rb-G0wRatou13f2P2EFqvOHQulKwpnzpBkHCLbwaEwL8sxSAwkzsQyrH6uer91wOi2T_1KKztTDs4Cs-rTo8fUkq3_Ic78PimrMllGQzCxbULrP2mm-Nu-nu1dMLLVmoA6bC0X5a5NHZc9_R5RTI8qM7nGxGNU-lnMrdyffatPFrNZXU2X1W1ymID1AOrv8HhafZ6NUzQ8gJqwM_PqLm8tLT76vq8ilT3zA8DIxhWJGcBIdZ_cs1ZEcGxE4gG5pdqH5E7p-PSIfPeiEXQ6ANEIvGgEo2hg2xXRCAbRCLxoBKNoPCaLk2lVnoa2fEYoKUt2oY4SrhjXvIjPAWayXOdaNpo1qWKZSgushMAp502caxELjliRgzme65TBdx3RI3LQdq16SgKqIqWhIWbJOYtUIXQsZUKpoDwVgMEn5J0bqlra3PJY4uSyHvY40KIus3I-DGs5IW_Ge9cmo8q1d712I17D0OEqlmhV129rnFEK-GsZ_cs9YFdkmFkR3uyJYdf4rITHBWbxm5Aj4N9I9nx_doNun5O7_lt4QQ6AbeoloNNd88rK2m8U7pEa |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+the+electronic+structure+of+single-walled+black+phosphorus+nanotubes&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Guan%2C+Lixiu&rft.au=Chen%2C+Guifeng&rft.au=Tao%2C+Junguang&rft.date=2016-06-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=18&rft.issue=22&rft.spage=15177&rft.epage=15181&rft_id=info:doi/10.1039%2Fc6cp01803c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |