Prediction of the electronic structure of single-walled black phosphorus nanotubes

Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional theory based calculations that black phosphorus (BP) nanotubes are achievable. Moreover, the electronic properties of BP nanotubes are explore...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 18; no. 22; pp. 15177 - 15181
Main Authors Guan, Lixiu, Chen, Guifeng, Tao, Junguang
Format Journal Article
LanguageEnglish
Published England 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional theory based calculations that black phosphorus (BP) nanotubes are achievable. Moreover, the electronic properties of BP nanotubes are explored. In contrast to their monolayer and bulk counterparts, most BP nanotubes possess indirect band gaps. In addition, strong anisotropic electronic behaviors are observed between zigzag and armchair nanotubes. Semiconducting to semi-metallic transition occurs only for zigzag tubes when its diameter shrinks to ∼1.5 nm. This difference is strongly related to the bond bending after the formation of the nanotubes which governs the s-p hybridization, as well as electron distribution in different p orbitals and this eventually determines the electronic structure of BP nanotubes. Size dependent electronic structure of black phosphorus nanotubes.
AbstractList Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional theory based calculations that black phosphorus (BP) nanotubes are achievable. Moreover, the electronic properties of BP nanotubes are explored. In contrast to their monolayer and bulk counterparts, most BP nanotubes possess indirect band gaps. In addition, strong anisotropic electronic behaviors are observed between zigzag and armchair nanotubes. Semiconducting to semi-metallic transition occurs only for zigzag tubes when its diameter shrinks to ∼1.5 nm. This difference is strongly related to the bond bending after the formation of the nanotubes which governs the s-p hybridization, as well as electron distribution in different p orbitals and this eventually determines the electronic structure of BP nanotubes.
Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional theory based calculations that black phosphorus (BP) nanotubes are achievable. Moreover, the electronic properties of BP nanotubes are explored. In contrast to their monolayer and bulk counterparts, most BP nanotubes possess indirect band gaps. In addition, strong anisotropic electronic behaviors are observed between zigzag and armchair nanotubes. Semiconducting to semi-metallic transition occurs only for zigzag tubes when its diameter shrinks to ∼1.5 nm. This difference is strongly related to the bond bending after the formation of the nanotubes which governs the s-p hybridization, as well as electron distribution in different p orbitals and this eventually determines the electronic structure of BP nanotubes. Size dependent electronic structure of black phosphorus nanotubes.
Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional theory based calculations that black phosphorus (BP) nanotubes are achievable. Moreover, the electronic properties of BP nanotubes are explored. In contrast to their monolayer and bulk counterparts, most BP nanotubes possess indirect band gaps. In addition, strong anisotropic electronic behaviors are observed between zigzag and armchair nanotubes. Semiconducting to semi-metallic transition occurs only for zigzag tubes when its diameter shrinks to similar to 1.5 nm. This difference is strongly related to the bond bending after the formation of the nanotubes which governs the s-p hybridization, as well as electron distribution in different p orbitals and this eventually determines the electronic structure of BP nanotubes.
Author Tao, Junguang
Chen, Guifeng
Guan, Lixiu
AuthorAffiliation School of Science
School of Materials Science and Engineering
Key Lab. for New Type of Functional Materials in Hebei Province
Hebei University of Technology
AuthorAffiliation_xml – sequence: 0
  name: Hebei University of Technology
– sequence: 0
  name: Key Lab. for New Type of Functional Materials in Hebei Province
– sequence: 0
  name: School of Materials Science and Engineering
– sequence: 0
  name: School of Science
Author_xml – sequence: 1
  givenname: Lixiu
  surname: Guan
  fullname: Guan, Lixiu
– sequence: 2
  givenname: Guifeng
  surname: Chen
  fullname: Chen, Guifeng
– sequence: 3
  givenname: Junguang
  surname: Tao
  fullname: Tao, Junguang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27198550$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1LxDAQBuAgK36sXrwrPYpQTZqkSY5S_IIFRfRc0uzErWabNUkR_71dV1cQwUNIIM8Mw7y7aNT5DhA6IPiUYKrOTGkWmEhMzQbaIaykucKSjdZvUW6j3RifMcaEE7qFtgtBlOQc76D7uwDT1qTWd5m3WZpBBg5MCr5rTRZT6E3qAyz_Yts9OcjftHMwzRqnzUu2mPk4nNDHrNOdT30DcQ9tWu0i7H_dY_R4efFQXeeT26ub6nySG8qKlFtcCGDCCkWmXDImrbSmsazhwErgquCsFFSIhkiriRZCFoVQxeA4M0ZjOkbHq76L4F97iKmet9GAc7oD38eaSMpLroTg_1OhqBrmKelAj75o38xhWi9CO9fhvf5e2QDwCpjgYwxga9MmvVxgCrp1NcH1MpW6Kqu7z1SqoeTkV8l31z_x4QqHaNbuJ2L6Aap-laU
CitedBy_id crossref_primary_10_1016_j_physe_2023_115745
crossref_primary_10_1007_s00339_017_0860_2
crossref_primary_10_1016_j_mtcomm_2022_105253
crossref_primary_10_20964_2019_03_43
crossref_primary_10_3390_ijms19124085
crossref_primary_10_1016_j_mtcomm_2022_103434
crossref_primary_10_1039_D2RA04969D
crossref_primary_10_1016_j_commatsci_2019_01_020
crossref_primary_10_1016_j_apsusc_2019_04_251
crossref_primary_10_1021_acs_jpclett_6b02271
crossref_primary_10_1016_j_cclet_2021_11_030
Cites_doi 10.1016/S0009-2614(99)00045-2
10.1126/science.269.5226.966
10.1021/nl5029717
10.1103/PhysRevB.90.085402
10.1038/nmat1849
10.1038/ncomms5651
10.1038/ncomms3341
10.1039/C4NR04829F
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.90.081408
10.1063/1.2842386
10.1088/0957-4484/26/41/415702
10.1038/ncomms5727
10.1209/epl/i2003-10043-1
10.1038/nnano.2012.193
10.1038/ncomms5475
10.1103/PhysRevLett.112.176801
10.1063/1.4885215
10.1016/0038-1098(84)90444-7
10.1038/ncomms7485
10.1021/nn501226z
10.1126/science.1102896
10.1088/0957-4484/26/5/055701
10.1038/nature04233
10.1038/nnano.2014.35
10.1103/PhysRevB.50.17953
10.1021/nl500935z
10.1039/c0ee00533a
10.1103/PhysRevLett.97.187401
10.1073/pnas.0502848102
10.1038/nnano.2014.176
10.1021/acs.jpcc.5b00176
10.1126/science.1184167
10.1021/nn5027388
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/c6cp01803c
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 15181
ExternalDocumentID 27198550
10_1039_C6CP01803C
c6cp01803c
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
123
29O
2WC
4.4
53G
705
70~
7~J
87K
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGKEF
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3G
J3I
M4U
N9A
NHB
O9-
OK1
P2P
R7B
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UHB
VH6
WH7
YNT
0UZ
1TJ
6TJ
71~
9M8
AAYXX
ACHDF
ACRPL
ADNMO
AFFNX
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ALUYA
ANLMG
ASPBG
AVWKF
BBWZM
CAG
CITATION
COF
EEHRC
FEDTE
HVGLF
H~9
IDY
J3H
L-8
MVM
NDZJH
R56
RCLXC
RIG
XJT
XOL
ZCG
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c342t-f027e47f791d58448f8fcbf4b5e46e5925467377b18fa1a7782279248f54cca03
ISSN 1463-9076
IngestDate Fri Jul 11 02:32:43 EDT 2025
Fri Jul 11 05:31:00 EDT 2025
Wed Feb 19 02:42:36 EST 2025
Tue Jul 01 02:46:21 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Tue Dec 17 20:59:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-f027e47f791d58448f8fcbf4b5e46e5925467377b18fa1a7782279248f54cca03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27198550
PQID 1793902763
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_1835659775
proquest_miscellaneous_1793902763
crossref_citationtrail_10_1039_C6CP01803C
rsc_primary_c6cp01803c
pubmed_primary_27198550
crossref_primary_10_1039_C6CP01803C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 6
  year: 2016
  text: 20160601
  day: 1
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2016
References Qiao (C6CP01803C-(cit12)/*[position()=1]) 2014; 5
Cabria (C6CP01803C-(cit28)/*[position()=1]) 2004; 65
Seifert (C6CP01803C-(cit27)/*[position()=1]) 2000; 318
Peng (C6CP01803C-(cit25)/*[position()=1]) 2014; 90
Chopra (C6CP01803C-(cit21)/*[position()=1]) 1995; 269
Wang (C6CP01803C-(cit5)/*[position()=1]) 2012; 7
Jiang (C6CP01803C-(cit15)/*[position()=1]) 2015; 26
Li (C6CP01803C-(cit9)/*[position()=1]) 2014; 9
Rodin (C6CP01803C-(cit8)/*[position()=1]) 2014; 112
Jiang (C6CP01803C-(cit16)/*[position()=1]) 2014; 5
Kawamura (C6CP01803C-(cit30)/*[position()=1]) 1984; 49
Buscema (C6CP01803C-(cit14)/*[position()=1]) 2014; 5
Ferrari (C6CP01803C-(cit2)/*[position()=1]) 2006; 97
Wei (C6CP01803C-(cit26)/*[position()=1]) 2014; 104
Lee (C6CP01803C-(cit7)/*[position()=1]) 2010; 328
Myahkostupov (C6CP01803C-(cit22)/*[position()=1]) 2011; 4
Hu (C6CP01803C-(cit29)/*[position()=1]) 2015; 26
Wang (C6CP01803C-(cit18)/*[position()=1]) 2014; 14
Novoselov (C6CP01803C-(cit6)/*[position()=1]) 2005; 102
Novoselov (C6CP01803C-(cit1)/*[position()=1]) 2005; 438
Xiang (C6CP01803C-(cit20)/*[position()=1]) 2015; 6
Deng (C6CP01803C-(cit13)/*[position()=1]) 2014; 8
Blöchl (C6CP01803C-(cit31)/*[position()=1]) 1994; 50
Jiang (C6CP01803C-(cit11)/*[position()=1]) 2014; 9
Perdew (C6CP01803C-(cit32)/*[position()=1]) 1996; 77
Gobre (C6CP01803C-(cit33)/*[position()=1]) 2013; 4
Liu (C6CP01803C-(cit10)/*[position()=1]) 2014; 8
She (C6CP01803C-(cit23)/*[position()=1]) 2008; 92
Novoselov (C6CP01803C-(cit4)/*[position()=1]) 2004; 306
Li (C6CP01803C-(cit24)/*[position()=1]) 2015; 119
Wang (C6CP01803C-(cit19)/*[position()=1]) 2015; 7
Geim (C6CP01803C-(cit3)/*[position()=1]) 2007; 6
Low (C6CP01803C-(cit17)/*[position()=1]) 2014; 90
Fei (C6CP01803C-(cit34)/*[position()=1]) 2014; 14
References_xml – volume: 318
  start-page: 355
  year: 2000
  ident: C6CP01803C-(cit27)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)00045-2
– volume: 269
  start-page: 966
  year: 1995
  ident: C6CP01803C-(cit21)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.269.5226.966
– volume: 14
  start-page: 6424
  year: 2014
  ident: C6CP01803C-(cit18)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl5029717
– volume: 90
  start-page: 085402
  year: 2014
  ident: C6CP01803C-(cit25)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.085402
– volume: 6
  start-page: 183
  year: 2007
  ident: C6CP01803C-(cit3)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 5
  start-page: 4651
  year: 2014
  ident: C6CP01803C-(cit14)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5651
– volume: 4
  start-page: 2341
  year: 2013
  ident: C6CP01803C-(cit33)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3341
– volume: 7
  start-page: 877
  year: 2015
  ident: C6CP01803C-(cit19)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR04829F
– volume: 77
  start-page: 3865
  year: 1996
  ident: C6CP01803C-(cit32)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 90
  start-page: 081408
  year: 2014
  ident: C6CP01803C-(cit17)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.081408
– volume: 92
  start-page: 053111
  year: 2008
  ident: C6CP01803C-(cit23)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2842386
– volume: 26
  start-page: 415702
  year: 2015
  ident: C6CP01803C-(cit29)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/41/415702
– volume: 5
  start-page: 4727
  year: 2014
  ident: C6CP01803C-(cit16)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5727
– volume: 65
  start-page: 82
  year: 2004
  ident: C6CP01803C-(cit28)/*[position()=1]
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2003-10043-1
– volume: 7
  start-page: 699
  year: 2012
  ident: C6CP01803C-(cit5)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 5
  start-page: 4475
  year: 2014
  ident: C6CP01803C-(cit12)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5475
– volume: 112
  start-page: 176801
  year: 2014
  ident: C6CP01803C-(cit8)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.176801
– volume: 104
  start-page: 251915
  year: 2014
  ident: C6CP01803C-(cit26)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4885215
– volume: 49
  start-page: 879
  year: 1984
  ident: C6CP01803C-(cit30)/*[position()=1]
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(84)90444-7
– volume: 6
  start-page: 6485
  year: 2015
  ident: C6CP01803C-(cit20)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7485
– volume: 8
  start-page: 4033
  year: 2014
  ident: C6CP01803C-(cit10)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn501226z
– volume: 306
  start-page: 666
  year: 2004
  ident: C6CP01803C-(cit4)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 26
  start-page: 055701
  year: 2015
  ident: C6CP01803C-(cit15)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/5/055701
– volume: 438
  start-page: 197
  year: 2005
  ident: C6CP01803C-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 9
  start-page: 372
  year: 2014
  ident: C6CP01803C-(cit9)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.35
– volume: 50
  start-page: 17953
  year: 1994
  ident: C6CP01803C-(cit31)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.50.17953
– volume: 14
  start-page: 2884
  year: 2014
  ident: C6CP01803C-(cit34)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl500935z
– volume: 4
  start-page: 998
  year: 2011
  ident: C6CP01803C-(cit22)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00533a
– volume: 97
  start-page: 187401
  year: 2006
  ident: C6CP01803C-(cit2)/*[position()=1]
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.187401
– volume: 102
  start-page: 10451
  year: 2005
  ident: C6CP01803C-(cit6)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0502848102
– volume: 9
  start-page: 825
  year: 2014
  ident: C6CP01803C-(cit11)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.176
– volume: 119
  start-page: 6405
  year: 2015
  ident: C6CP01803C-(cit24)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b00176
– volume: 328
  start-page: 76
  year: 2010
  ident: C6CP01803C-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1184167
– volume: 8
  start-page: 8292
  year: 2014
  ident: C6CP01803C-(cit13)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn5027388
SSID ssj0001513
Score 2.248907
Snippet Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15177
SubjectTerms Anisotropy
Bend strength
Electronic structure
Electronics
Energy gaps (solid state)
Nanotubes
Orbitals
Phosphorus
Title Prediction of the electronic structure of single-walled black phosphorus nanotubes
URI https://www.ncbi.nlm.nih.gov/pubmed/27198550
https://www.proquest.com/docview/1793902763
https://www.proquest.com/docview/1835659775
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdge4AXxNegfCkIXhAKJLETJ49T1DFQGRVKpb5FjmdrlaakahuB-Ou5i-2YqRMaPDRKzpGT-i7n3519d4S8BUwsCpbqUDFKQ0ZFEjaNyEMdC8DnItXFUO7t61l2umBflunSx54M0SW75oP8dW1cyf9wFWjAV4yS_QfOjp0CAc6Bv3AEDsPxRjyeb3CZxWG-YXuGr2pjMsPi-gC0oUfgUoU_sHIKQE702r1fX3Rb-G0wRatou13f2P2EFqvOHQulKwpnzpBkHCLbwaEwL8sxSAwkzsQyrH6uer91wOi2T_1KKztTDs4Cs-rTo8fUkq3_Ic78PimrMllGQzCxbULrP2mm-Nu-nu1dMLLVmoA6bC0X5a5NHZc9_R5RTI8qM7nGxGNU-lnMrdyffatPFrNZXU2X1W1ymID1AOrv8HhafZ6NUzQ8gJqwM_PqLm8tLT76vq8ilT3zA8DIxhWJGcBIdZ_cs1ZEcGxE4gG5pdqH5E7p-PSIfPeiEXQ6ANEIvGgEo2hg2xXRCAbRCLxoBKNoPCaLk2lVnoa2fEYoKUt2oY4SrhjXvIjPAWayXOdaNpo1qWKZSgushMAp502caxELjliRgzme65TBdx3RI3LQdq16SgKqIqWhIWbJOYtUIXQsZUKpoDwVgMEn5J0bqlra3PJY4uSyHvY40KIus3I-DGs5IW_Ge9cmo8q1d712I17D0OEqlmhV129rnFEK-GsZ_cs9YFdkmFkR3uyJYdf4rITHBWbxm5Aj4N9I9nx_doNun5O7_lt4QQ6AbeoloNNd88rK2m8U7pEa
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+the+electronic+structure+of+single-walled+black+phosphorus+nanotubes&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Guan%2C+Lixiu&rft.au=Chen%2C+Guifeng&rft.au=Tao%2C+Junguang&rft.date=2016-06-01&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=18&rft.issue=22&rft.spage=15177&rft.epage=15181&rft_id=info:doi/10.1039%2Fc6cp01803c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon