Prediction of the electronic structure of single-walled black phosphorus nanotubes
Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional theory based calculations that black phosphorus (BP) nanotubes are achievable. Moreover, the electronic properties of BP nanotubes are explore...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 18; no. 22; pp. 15177 - 15181 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Due to its high carrier mobility and tunable bandgap, phosphorene has been the subject of immense interest recently. Herein, we show using density functional theory based calculations that black phosphorus (BP) nanotubes are achievable. Moreover, the electronic properties of BP nanotubes are explored. In contrast to their monolayer and bulk counterparts, most BP nanotubes possess indirect band gaps. In addition, strong anisotropic electronic behaviors are observed between zigzag and armchair nanotubes. Semiconducting to semi-metallic transition occurs only for zigzag tubes when its diameter shrinks to ∼1.5 nm. This difference is strongly related to the bond bending after the formation of the nanotubes which governs the s-p hybridization, as well as electron distribution in different p orbitals and this eventually determines the electronic structure of BP nanotubes.
Size dependent electronic structure of black phosphorus nanotubes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c6cp01803c |