Stabilization of potentially toxic elements contained in mine waste: A microbiological approach for the environmental management of mine tailings

Metals are key materials extensively employed in several industries to produce technological and daily-life products. The mining industry that produces such commodities generates Tons of waste that if not remediated can be transferred to the surrounding environment, thus representing a water, air, a...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental management Vol. 270; p. 110873
Main Authors Valenzuela, Edgardo I., García-Figueroa, Alexander C., Amábilis-Sosa, Leonel E., Molina-Freaner, Francisco E., Pat-Espadas, Aurora M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Metals are key materials extensively employed in several industries to produce technological and daily-life products. The mining industry that produces such commodities generates Tons of waste that if not remediated can be transferred to the surrounding environment, thus representing a water, air, and soil pollution threat. In this work, we evaluated the feasibility of microbial sulfate reduction (SR) as a management strategy for this waste. Mine tailings were sampled from two abandoned mining sites located in Sonora (northwestern Mexico) and treated in anaerobic microcosms under SR conditions using anaerobic sludge as the inoculum at two different tailing:inoculum ratios (TIR). Major TIR's were found to be the triggering factor for the highest SR activities observed (73.6 ± 8.8 mg SO42− L−1 day−1). This stimulation was linked to the dissolution of sulfate bearing minerals (anglesite, jarosite, and gypsum) which provided additional sulfate for microbial activity. However, under this condition, longer lag phases for SR were observed, which was potentially due to pH inhibition at early incubation stages (pH ~3.7). Despite this, all biologically SR performing treatments presented important sulfide precipitation which was associated to changes in the mineralogy of the mine tailings. Metals of environmental concern such as As, Cd, Co, Cr and, Pb were detected to have shifted from the aqueous extractable phase to the bound to Fe and Mn oxides and residual phases. This finding was in accordance with the non-detectable concentrations of these metals in the aqueous phase by the end of the biological treatment which proved the effectiveness of this approach. This study provides insights into the promising potential of anaerobic microbes for the environmental management of mine tailings. [Display omitted] •Mine tailings were biologically treated using anaerobic sludge as inoculum.•The effect of tailing:inoculum ratio in the treatment was analyzed.•Minerals dissolution increased sulfate reduction (SR) rates and extent.•Toxic metals were immobilized as consequence of the SR activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0301-4797
1095-8630
DOI:10.1016/j.jenvman.2020.110873