Fourier Transform of the Orthogonal Polynomials on the Unit Ball and Continuous Hahn Polynomials
Some systems of univariate orthogonal polynomials can be mapped into other families by the Fourier transform. The most-studied example is related to the Hermite functions, which are eigenfunctions of the Fourier transform. For the multivariate case, by using the Fourier transform and Parseval’s iden...
Saved in:
Published in | Axioms Vol. 11; no. 10; p. 558 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Some systems of univariate orthogonal polynomials can be mapped into other families by the Fourier transform. The most-studied example is related to the Hermite functions, which are eigenfunctions of the Fourier transform. For the multivariate case, by using the Fourier transform and Parseval’s identity, very recently, some examples of orthogonal systems of this type have been introduced and orthogonality relations have been discussed. In the present paper, this method is applied for multivariate orthogonal polynomials on the unit ball. The Fourier transform of these orthogonal polynomials on the unit ball is obtained. By Parseval’s identity, a new family of multivariate orthogonal functions is introduced. The results are expressed in terms of the continuous Hahn polynomials. |
---|---|
ISSN: | 2075-1680 2075-1680 |
DOI: | 10.3390/axioms11100558 |