Effects of low melting point metals (Ga, In, Sn) on hydrolysis properties of aluminum alloys
Low melting point metals (Ga, In, Sn) as alloy elements were used to prepare Al–In–Sn and Al–Ga–In–Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction (XRD) and sca...
Saved in:
Published in | Transactions of Nonferrous Metals Society of China Vol. 26; no. 1; pp. 152 - 159 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Low melting point metals (Ga, In, Sn) as alloy elements were used to prepare Al–In–Sn and Al–Ga–In–Sn alloys through mechanical ball milling method. The effects of mass ratio of In to Sn and Ga content on the hydrolysis properties of aluminum alloys were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy disperse spectroscopy (EDS) were used to analyze the compositions and morphologies of the obtained Al alloys. The results show that the phase compositions of Al–In–Sn ternary alloys are Al and two intermetallic compounds, In3Sn and InSn4. All Al–In–Sn ternary alloys exhibit poor hydrolysis activity at room temperature. Al–In–Sn alloy with the mass ratio of In to Sn equaling 1:4 has the highest hydrogen yield. After Ga is introduced to the ternary alloys, the hydrolysis activity of aluminum alloys at room temperature is greatly improved. It is speculated that the addition of Ga element promotes the formation of defects inside the Al alloys and Ga–In3Sn–InSn4 eutectic alloys on the alloys surface. Al atoms can be dissolved in this eutectic phase and become the active spots during the hydrolysis process. The small size and uniform distribution of this eutectic phase may be responsible for the enhancement of hydrolysis activity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1003-6326 |
DOI: | 10.1016/S1003-6326(16)64100-6 |