A Multi-Channel Salience Based Detail Exaggeration Technique for 3D Relief Surfaces

Visual saliency can always persuade the viewer's visual attention to fine-scale mesostructure of 3D complex shapes. Owing to the multi-channel salience measure and salience-domain shape modeling technique, a novel visual saliency based shape depiction scheme is presented to exaggerate salient geomet...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 27; no. 6; pp. 1100 - 1109
Main Author 缪永伟 冯结青 王金荣 Renato Pajarola
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.11.2012
Springer Nature B.V
College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China%State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310027, China%Department of Informatics, University of Zürich, Zürich CH-8050, Switzerland
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Visual saliency can always persuade the viewer's visual attention to fine-scale mesostructure of 3D complex shapes. Owing to the multi-channel salience measure and salience-domain shape modeling technique, a novel visual saliency based shape depiction scheme is presented to exaggerate salient geometric details of the underlying relief surface. Our multi-channel salience measure is calculated by combining three feature maps, i.e., the 0-order feature map of local height distribution, the l-order feature map of normal difference, and the 2-order feature map of mean curvature variation. The original relief surface is firstly manipulated by a salience-domain enhancement function, and the detail exaggeration surface can then be obtained by adjusting the surface normals of the original surface as the corresponding final normals of the manipulated surface. The advantage of our detail exaggeration technique is that it can adaptively alter the shading of the original shape to reveal visually salient features whilst keeping the desired appearance unimpaired. The experimental results demonstrate that our non-photorealistic shading scheme can enhance the surface mesostructure effectively and thus improving the shape depiction of the relief surfaces.
Bibliography:Visual saliency can always persuade the viewer's visual attention to fine-scale mesostructure of 3D complex shapes. Owing to the multi-channel salience measure and salience-domain shape modeling technique, a novel visual saliency based shape depiction scheme is presented to exaggerate salient geometric details of the underlying relief surface. Our multi-channel salience measure is calculated by combining three feature maps, i.e., the 0-order feature map of local height distribution, the l-order feature map of normal difference, and the 2-order feature map of mean curvature variation. The original relief surface is firstly manipulated by a salience-domain enhancement function, and the detail exaggeration surface can then be obtained by adjusting the surface normals of the original surface as the corresponding final normals of the manipulated surface. The advantage of our detail exaggeration technique is that it can adaptively alter the shading of the original shape to reveal visually salient features whilst keeping the desired appearance unimpaired. The experimental results demonstrate that our non-photorealistic shading scheme can enhance the surface mesostructure effectively and thus improving the shape depiction of the relief surfaces.
nmlti-channel salience, salience-domain shape modeling, detail exaggeration, shape depiction, relief surface
11-2296/TP
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1000-9000
1860-4749
DOI:10.1007/s11390-012-1288-y