Numerical analysis of three-dimensional MHD natural convection flow in a short horizontal cylindrical annulus

A numerical study of three-dimensional (3D) MHD laminar flow in a short horizontal cylindrical annulus has been performed to characterize the impacts of a uniform axial magnetic field on both hydrodynamic and thermal behaviors. This configuration corresponds to a horizontal annular mold containing m...

Full description

Saved in:
Bibliographic Details
Published inInternational communications in heat and mass transfer Vol. 98; pp. 273 - 285
Main Authors Wang, Wei, Li, Ben-Wen, Varghese, Philip-Leslie, Leng, Xue-Yuan, Tian, Xi-Yan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A numerical study of three-dimensional (3D) MHD laminar flow in a short horizontal cylindrical annulus has been performed to characterize the impacts of a uniform axial magnetic field on both hydrodynamic and thermal behaviors. This configuration corresponds to a horizontal annular mold containing molten iron or low carbon steel in electromagnetic casting (EMC). Complex nonlinear governing equations are solved numerically by means of the finite volume method based on artificial compressibility algorithm. The induced electric potential caused by the magnetic field is considered. Results show that a typical 3D steady spiral flow arises and the symmetry breaking occurs under a weak magnetic field of Ha < 10. As the Hartmann number increases, the spiral flow is distinctly suppressed, and then it changes to a helical flow with two transverse cells adjacent to each of the end walls. Correspondingly, the flow patterns and isotherms of fluid become symmetric with respect to the mid-axial plane of the annulus. Further increasing the Hartmann number, the fluid particle trajectories essentially lie in the cross-section of the annulus, as for two-dimensional solutions, with an extremely small axial dependency. In addition, both the values of local Nusselt number at the isothermal walls and its axial dependency, mainly in the upper region (−38π≤φ≤38π), are significantly affected by the magnetic field. The results of the present work can be useful in producing high-quality products by magnetic control. •Axial-symmetry breaking occurs under a weak magnetic field of Ha < 10.•Magnetic field leads to the transition of flow from asymmetric spiral to symmetric helical, and finally quasi two-dimensional.•Heat transfer rates at the inner and outer cylinder walls are significantly affected by the magnetic field.
ISSN:0735-1933
1879-0178
DOI:10.1016/j.icheatmasstransfer.2018.09.009