Pulmonary surfactants affinity Pluronic-hybridized liposomes enhance the treatment of drug-resistant lung cancer

[Display omitted] For a long time, the incidence and mortality of lung cancer have ranked first among all kinds of cancers, of which the major type is non-small cell lung cancer (NSCLC). Until now, chemotherapy and radiotherapy are still the first choice for patients with advanced or metastatic NSCL...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of pharmaceutics Vol. 607; p. 120973
Main Authors Wang, Rui, Sun, Yali, He, Wenxiu, Chen, Yiting, Lu, Enhao, Sha, Xianyi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] For a long time, the incidence and mortality of lung cancer have ranked first among all kinds of cancers, of which the major type is non-small cell lung cancer (NSCLC). Until now, chemotherapy and radiotherapy are still the first choice for patients with advanced or metastatic NSCLC. However, the emergence of multi-drug resistance (MDR) always leads to the failure of chemotherapy and increases cancer-related mortality. In this study, we prepared a Pluronic-hybridized paclitaxel-loaded liposome (PPL), which was used in combination with ambroxol (Ax) to not only resensitize drug-resistant tumor cells, but also increase the preparation retention in the lung. On the one hand, Ax induced the production of pulmonary surfactants (PS) and responsively improved the accumulation of pulmonary surfactants affinity liposomes whose skeleton was exogenous pulmonary surfactant phospholipids DPPC, because of the specific affinity of phospholipids related to pulmonary surfactant proteins. On the other hand, drug-resistant tumor cells were resensitized due to the inhibition of autophagy by Ax and the reduced expression of the drug-resistant protein P-glycoprotein (P-gp) by Pluronic P105. Therefore, we concluded that the combination of PPL and Ax achieved excellent killing tumor effects through multi-path and multi-strategy, having great application prospects in the future.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2021.120973