Fuzzy Logic Controller Scheme for Floor Vibration Control

The design of civil engineering floors is increasingly being governed by their vibration serviceability performance. This trend is the result of advancements in design technologies offering designers greater flexibilities in realising more lightweight, longer span and more open-plan layouts. These f...

Full description

Saved in:
Bibliographic Details
Published inMATEC Web of Conferences Vol. 24; p. 6005
Main Authors Nyawako, Donald Steve, Reynolds, Paul, Leal Pimentel, Roberto, Hudson, Emma
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The design of civil engineering floors is increasingly being governed by their vibration serviceability performance. This trend is the result of advancements in design technologies offering designers greater flexibilities in realising more lightweight, longer span and more open-plan layouts. These floors are prone to excitation from human activities. The present research work looks at analytical studies of active vibration control on a case study floor prototype that has been specifically designed to be representative of a real office floor structure. Specifically, it looks at tuning fuzzy control gains with the aim of adapting them to measured structural responses under human excitation. Vibration mitigation performances are compared with those of a general velocity feedback controller, and these are found to be identical in these sets of studies. It is also found that slightly less control force is required for the fuzzy controller scheme at moderate to low response levels and as a result of the adaptive gain, at very low responses the control force is close to zero, which is a desirable control feature. There is also saturation in the peak gain with the fuzzy controller scheme, with this gain tending towards the optimal feedback gain of the direct velocity feedback (DVF) at high response levels for this fuzzy design.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/20152406005