Chemical synthesis of Ub-AMC via ligation of peptide hydrazides

The C-terminal conjugate of ubiquitin with 7-amino-4-methylcoumarin (Ub-AMC) is an important probe for fluorescencebased analysis of deubiquitinating enzyme (DUB) activity. It is important to develop more efficient methods for the preparation of Ub-AMC because the currently available technology is s...

Full description

Saved in:
Bibliographic Details
Published inScience China. Chemistry Vol. 56; no. 9; pp. 1301 - 1306
Main Authors Liang, Jun, Fang, GeMin, Huang, XiuLiang, Mei, ZiQing, Li, Juan, Tian, ChangLin, Liu, Lei
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2013
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The C-terminal conjugate of ubiquitin with 7-amino-4-methylcoumarin (Ub-AMC) is an important probe for fluorescencebased analysis of deubiquitinating enzyme (DUB) activity. It is important to develop more efficient methods for the preparation of Ub-AMC because the currently available technology is still expensive for scaled-up production. In the present work we report an efficient strategy for total chemical synthesis of Ub-AMC through ligation of peptide hydrazides. Three peptide segments are assembled via N-to-C sequential ligation and the resulting product is converted to Ub-AMC via TCEP-mediated desulfurization. The synthetic Ub-AMC is shown to have expected biological functions throug
Bibliography:h the measurement of its DUB activity.ligation of peptide hydrazides, peptide segment condensation, deubiquitinating enzymes, ubiquitin
The C-terminal conjugate of ubiquitin with 7-amino-4-methylcoumarin (Ub-AMC) is an important probe for fluorescencebased analysis of deubiquitinating enzyme (DUB) activity. It is important to develop more efficient methods for the preparation of Ub-AMC because the currently available technology is still expensive for scaled-up production. In the present work we report an efficient strategy for total chemical synthesis of Ub-AMC through ligation of peptide hydrazides. Three peptide segments are assembled via N-to-C sequential ligation and the resulting product is converted to Ub-AMC via TCEP-mediated desulfurization. The synthetic Ub-AMC is shown to have expected biological functions throug
11-5839/O6
ISSN:1674-7291
1869-1870
DOI:10.1007/s11426-013-4885-x