Ultrastrong lightweight nanocellulose-based composite aerogels with robust superhydrophobicity and durable thermal insulation under extremely environment
Ultra-lightweight porous aerogels based on nanocellulose (NC) have promising applications in various fields such as building insulation, sewage treatment, energy storage, and aerospace. One of the key advantages of these aerogels is their exceptionally low thermal conductivity. Nevertheless, the the...
Saved in:
Published in | Carbohydrate polymers Vol. 323; p. 121392 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ultra-lightweight porous aerogels based on nanocellulose (NC) have promising applications in various fields such as building insulation, sewage treatment, energy storage, and aerospace. One of the key advantages of these aerogels is their exceptionally low thermal conductivity. Nevertheless, the thermal insulation of NC aerogel (NCA) can deteriorate with changes in temperature and humidity conditions, making it crucial to develop a bulk aerogel that can maintain exceptional thermal insulating properties in harsh environmental conditions. A sustainable and user-friendly approach to synthesizing cellulose/poly(vinyl alcohol) aerogel (CellPA) materials has been developed, which are lightweight, possess good insulating properties, and demonstrate robust superhydrophobicity even in harsh environmental conditions. The CellPA are both exceptionally lightweight and robust, boasting outstanding resistance to combustion while also displaying a thermal conductivity of 36.1 mW m−1 K−1, suggesting they hold great promise for insulation applications. Furthermore, CellPA also exhibits robust superhydrophobicity even under harsh conditions, confirming the homogenous superhydrophobic modification of the biodegradable PVA through chemical methods. The manufacturing of bio-based composite materials with enhanced mechanical and thermal insulation features has gained immense popularity in a broad spectrum of contemporary engineering applications. These composite materials are particularly valuable as a robust, energy-efficient, lightweight, waterproof and flameproof for construction materials.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0144-8617 1879-1344 |
DOI: | 10.1016/j.carbpol.2023.121392 |