Approximate equations for film condensation in the presence of non-condensable gases
Non-condensable gases greatly influence vapor condensation, resulting in a substantial reduction in the condensation heat transfer coefficient. Although extensive analytical and numerical investigations of condensation heat transfer in the presence of non-condensable gases have been done, most of th...
Saved in:
Published in | International communications in heat and mass transfer Vol. 85; pp. 124 - 130 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Non-condensable gases greatly influence vapor condensation, resulting in a substantial reduction in the condensation heat transfer coefficient. Although extensive analytical and numerical investigations of condensation heat transfer in the presence of non-condensable gases have been done, most of the solutions are quite complicated. Based on a thermodynamics analysis, when the vapor is not close to its critical state and the mass fraction of the non-condensable gas in the main stream is less than 0.1, an equation which relates the vapor/gas-liquid interface parameters and the main stream parameters was developed in the present work. For forced convection film condensation heat transfer on the outside surface of a horizontal tube, the present equation combining with an existing analytical solution as well as a heat transfer correlation given by previous investigators, gives the heat flux and the interfacial parameters of the water vapor-air mixture. The results show that the predicted heat flux is in good agreement with experimental data available in the literature and that even a small amount of air substantially reduces the heat flux. An algebraic equation set is given to calculate free convection film condensation on a vertical flat surface, which associates the interfacial and main stream parameters, an integral solution and an analytical solution given by previous investigators. The calculated results are in good agreement with experimental data in the literature. |
---|---|
ISSN: | 0735-1933 1879-0178 |
DOI: | 10.1016/j.icheatmasstransfer.2017.05.007 |