Gene Hypermethylation in Multiple Myeloma: Lessons from a Cancer Pathway Approach

Multiple myeloma (MM) is an incurable plasma cell neoplasm. Pathogenesis involves upregulation of D-type cyclins and activation of oncogenes, but little is known about the role of tumor suppressor genes. Gene hypermethylation is an alternative mechanism of tumor suppressor gene inactivation. Various...

Full description

Saved in:
Bibliographic Details
Published inClinical lymphoma & myeloma Vol. 8; no. 6; pp. 331 - 339
Main Authors Chim, Chor S., Kwong, Yok L., Liang, Raymond
Format Journal Article
LanguageEnglish
Published United States 01.12.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multiple myeloma (MM) is an incurable plasma cell neoplasm. Pathogenesis involves upregulation of D-type cyclins and activation of oncogenes, but little is known about the role of tumor suppressor genes. Gene hypermethylation is an alternative mechanism of tumor suppressor gene inactivation. Various approaches have been used to elucidate the role of gene hypermethylation in MM, including a candidate gene approach, microarray approach for genes upregulated by hypomethylating agents, and a cancer pathway approach, which enables a comprehensive picture of the involvement of multiple tumor suppressor genes in MM. Based on the cancer pathway approach, the following data on the involvement of cell cycle control, intrinsic tumor suppressor, and cell signaling were derived. First, among the INK4 and CIP/KIP families of cyclin-dependent kinase inhibitors, only CDKN2B and CDKN2A are frequently hypermethylated. Second, methylation of SHP1 and soluble Wnt inhibitors is associated with constitutive activation of JAK/STAT and Wnt signaling. Importantly, downregulation of the signaling pathways can be restored by demethylation and re-expression of SHP1 and soluble Wnt inhibitors, which is potentially important therapeutically. Third, of the tumor suppressor genes involved in the DAPK/P14/HDM2/P53/Apaf-1 pathway, only DAPK is frequently methylated, which appeared to be an adverse prognostic factor to survival. Lastly, apart from being implicated in the progression from monoclonal gammopathy of unknown significance to MM, aberrant gene promoter methylation might also account for late disease progression in MM. Future studies are needed to delineate the biologic consequence of gene hypermethylation, the prognostic effect of gene methylation, and the possibility of hypomethylation therapy.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1557-9190
1938-0712
DOI:10.3816/CLM.2008.n.048