The anatomy of dopamine in monkey and human prefrontal cortex

This chapter reviews recent evidence establishing the comparable organization of dopamine afferents and dopaminergic receptors in the human and monkey prefrontal cortex. Light microscopy using a dopamine-specific antibody reveals that the dopamine innervation in the human prefrontal cortex exhibits...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural transmission. Supplementum Vol. 36; p. 163
Main Authors Goldman-Rakic, P S, Lidow, M S, Smiley, J F, Williams, M S
Format Journal Article
LanguageEnglish
Published Austria 1992
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:This chapter reviews recent evidence establishing the comparable organization of dopamine afferents and dopaminergic receptors in the human and monkey prefrontal cortex. Light microscopy using a dopamine-specific antibody reveals that the dopamine innervation in the human prefrontal cortex exhibits a distinct bilaminar distribution with dense bands of fibers in the upper and deeper strata of the cortex, closely resembling the patterning of dopamine fibers in the monkey prefrontal cortex. Also, EM-immunohistochemistry has now revealed identical synaptic complexes both in human and monkey. In both species, dopamine axons from symmetric synapses predominantly on the spines of pyramidal cells. In many cases, the same spine is apposed by an asymmetric, putatively excitatory synapse. Finally, both in human and monkey prefrontal cortex, the dopamine D1-specific ligand, 3H-SCH23390, and the D2-specific ligand, H3-raclopride, label binding sites in laminar positions which match the location of the densest dopamine innervation. These results indicate that the organization of the cortical dopamine system is essentially the same in macaque monkey and human and that the nonhuman primate is a suitable animal model for analysis of dopamine function in prefrontal cortex.
ISSN:0303-6995
DOI:10.1007/978-3-7091-9211-5_8