Preparation of Si quantum dots by phase transition with controlled annealing
Silicon quantum dots (Si-QDs) are excellent luminescent material due to its unique optoelectronic properties and have huge application potential in the field of photodetection. Recently, there has been much research interests in developing low-cost, facile and environmentally friendly methods to pre...
Saved in:
Published in | Nanotechnology Vol. 32; no. 41; pp. 415205 - 415210 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
08.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silicon quantum dots (Si-QDs) are excellent luminescent material due to its unique optoelectronic properties and have huge application potential in the field of photodetection. Recently, there has been much research interests in developing low-cost, facile and environmentally friendly methods to prepare the nanomaterials in addition to yielding excellent performances. In this article, we developed a novel preparation method of producing Si-QDs film based on carbon-silicon composite. The film was synthesized by co-sputtering using magnetron sputtering technique and studied at different annealing temperatures. Upon annealing, the film was transformed from an amorphous state to a crystalline state leading to Si-QDs precipitation, which can be observed at a low temperature of 600 °C. A Si-QDs thin film/n-Si photodetector was then prepared and characterized. The device exhibited a high specific detection rate (D*) of 1.246 × 1012cm Hz1/2W-1under 940 nm (1.1 mW cm-2) infrared radiation at 5 V bias. It also demonstrated good responsiveness and stability.Silicon quantum dots (Si-QDs) are excellent luminescent material due to its unique optoelectronic properties and have huge application potential in the field of photodetection. Recently, there has been much research interests in developing low-cost, facile and environmentally friendly methods to prepare the nanomaterials in addition to yielding excellent performances. In this article, we developed a novel preparation method of producing Si-QDs film based on carbon-silicon composite. The film was synthesized by co-sputtering using magnetron sputtering technique and studied at different annealing temperatures. Upon annealing, the film was transformed from an amorphous state to a crystalline state leading to Si-QDs precipitation, which can be observed at a low temperature of 600 °C. A Si-QDs thin film/n-Si photodetector was then prepared and characterized. The device exhibited a high specific detection rate (D*) of 1.246 × 1012cm Hz1/2W-1under 940 nm (1.1 mW cm-2) infrared radiation at 5 V bias. It also demonstrated good responsiveness and stability. |
---|---|
AbstractList | Silicon quantum dots (Si-QDs) are excellent luminescent material due to its unique optoelectronic properties and have huge application potential in the field of photodetection. Recently, there has been much research interests in developing low-cost, facile and environmentally friendly methods to prepare the nanomaterials in addition to yielding excellent performances. In this article, we developed a novel preparation method of producing Si-QDs film based on carbon-silicon composite. The film was synthesized by co-sputtering using magnetron sputtering technique and studied at different annealing temperatures. Upon annealing, the film was transformed from an amorphous state to a crystalline state leading to Si-QDs precipitation, which can be observed at a low temperature of 600 °C. A Si-QDs thin film/n-Si photodetector was then prepared and characterized. The device exhibited a high specific detection rate (D*) of 1.246 × 1012cm Hz1/2W-1under 940 nm (1.1 mW cm-2) infrared radiation at 5 V bias. It also demonstrated good responsiveness and stability.Silicon quantum dots (Si-QDs) are excellent luminescent material due to its unique optoelectronic properties and have huge application potential in the field of photodetection. Recently, there has been much research interests in developing low-cost, facile and environmentally friendly methods to prepare the nanomaterials in addition to yielding excellent performances. In this article, we developed a novel preparation method of producing Si-QDs film based on carbon-silicon composite. The film was synthesized by co-sputtering using magnetron sputtering technique and studied at different annealing temperatures. Upon annealing, the film was transformed from an amorphous state to a crystalline state leading to Si-QDs precipitation, which can be observed at a low temperature of 600 °C. A Si-QDs thin film/n-Si photodetector was then prepared and characterized. The device exhibited a high specific detection rate (D*) of 1.246 × 1012cm Hz1/2W-1under 940 nm (1.1 mW cm-2) infrared radiation at 5 V bias. It also demonstrated good responsiveness and stability. |
Author | Fang, Liyuan Teng, Kar Seng Xiang, Jinzhong Tang, Libin |
Author_xml | – sequence: 1 givenname: Liyuan orcidid: 0000-0001-6951-3208 surname: Fang fullname: Fang, Liyuan organization: Yunnan Key Laboratory of Advanced Photoelectric Materials & Devices, No.31 East Jiaochang Road, 650223, Kunming, People’s Republic of China – sequence: 2 givenname: Libin orcidid: 0000-0002-7174-2963 surname: Tang fullname: Tang, Libin organization: Kunming Institute of Physics, Kunming 650223, People’s Republic of China – sequence: 3 givenname: Kar Seng orcidid: 0000-0003-4325-8573 surname: Teng fullname: Teng, Kar Seng organization: Swansea University College of Engineering, Bay Campus, Fabian Way, Swansea SA1 8EN, United Kingdom – sequence: 4 givenname: Jinzhong surname: Xiang fullname: Xiang, Jinzhong organization: Yunnan Key Laboratory of Advanced Photoelectric Materials & Devices, No.31 East Jiaochang Road, 650223, Kunming, People’s Republic of China |
BookMark | eNp9kE1Lw0AQhhdRsK3ePe5RwdiZ_cjHUYpfUFBQz8s02diUdDfdTZD-e1srnkQYeGF43oF5xuzYeWcZu0C4QcjzKcoUk1SLfEolYpEesdHv6piNoNBZolSuTtk4xhUAYi5wxOYvwXYUqG-8477mrw3fDOT6Yc0r30e-2PJuSdHyPpCLzTf22fRLXnrXB9-2tuLknKW2cR9n7KSmNtrzn5yw9_u7t9ljMn9-eJrdzpNSKtEnsqgzKDNV57ISkigDYTUVEqCAGonSCrTMUg1ICwV1LqpKI2GaA6FAiXLCLg93u-A3g429WTextG1LzvohGqFVISAttNqhcEDL4GMMtjZdaNYUtgbB7MWZvSWzt2QO4naV60Ol8Z1Z-SG43S__4Vd_4I6cN1IYhbvRArTpqlp-Ad_sfT8 |
CODEN | NNOTER |
Cites_doi | 10.1016/j.surfcoat.2006.02.029 10.1063/1.1371794 10.1063/1.4871980 10.1038/355761a0 10.1063/1.108773 10.1002/adma.201506140 10.1016/j.dyepig.2019.107587 10.1103/PhysRevLett.46.211 10.1063/1.3561439 10.1063/1.1835566 10.1063/1.2203394 10.1007/s10854-014-2321-4 10.1039/C7TC04647B 10.1007/s12200-013-0324-z 10.1088/0957-4484/23/6/065302 10.1016/j.jallcom.2019.06.171 10.1126/science.267.5206.1966 10.1016/S0040-6090(01)00872-0 10.1088/0957-4484/17/8/010 10.1063/1.3427386 10.1021/ja00253a015 10.1016/j.jallcom.2018.05.126 10.1021/nl025662w 10.1021/cm051467h |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd 2021 IOP Publishing Ltd. |
Copyright_xml | – notice: 2021 IOP Publishing Ltd – notice: 2021 IOP Publishing Ltd. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1088/1361-6528/ac1196 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1361-6528 |
ExternalDocumentID | 10_1088_1361_6528_ac1196 nanoac1196 |
GrantInformation_xml | – fundername: Yunnan Key Laboratory of Advanced Photoelectric Materials & Devices, China. grantid: 51462037 – fundername: National Natural Science Foundation of China grantid: 61106098 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | --- -~X 123 1JI 4.4 53G 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP ZMT AAYXX ADEQX CITATION 7X8 |
ID | FETCH-LOGICAL-c342t-39f70c74f83d23aa702e5a930090f1aa6d05376501ab40f82dd51a1680a121313 |
IEDL.DBID | IOP |
ISSN | 0957-4484 1361-6528 |
IngestDate | Fri Jul 11 06:56:07 EDT 2025 Tue Jul 01 01:27:18 EDT 2025 Wed Aug 21 03:34:51 EDT 2024 Wed Jun 07 11:18:58 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c342t-39f70c74f83d23aa702e5a930090f1aa6d05376501ab40f82dd51a1680a121313 |
Notes | NANO-129269.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6951-3208 0000-0002-7174-2963 0000-0003-4325-8573 |
OpenAccessLink | https://cronfa.swan.ac.uk/Record/cronfa57285/Download/57285__20363__352c1207cfc440c787d6c8c551c99a6e.pdf |
PQID | 2549206954 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2549206954 iop_journals_10_1088_1361_6528_ac1196 crossref_primary_10_1088_1361_6528_ac1196 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-08 |
PublicationDateYYYYMMDD | 2021-10-08 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-08 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | Nanotechnology |
PublicationTitleAbbrev | NANO |
PublicationTitleAlternate | Nanotechnology |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Wen (nanoac1196bib19) 2014; 115 Gourbilleau (nanoac1196bib10) 2001; 78 Cao (nanoac1196bib12) 2013; 6 Spanhel (nanoac1196bib5) 1987; 109 Shin (nanoac1196bib22) 2018; 758 Yu (nanoac1196bib25) 2016; 28 Budiman (nanoac1196bib11) 2012; 23 Rezgui (nanoac1196bib13) 2010; 96 Shin (nanoac1196bib24) 2017; 10 Barik (nanoac1196bib9) 2006; 17 Swain (nanoac1196bib20) 2006; 201 Yang (nanoac1196bib21) 2005; 97 Gaponik (nanoac1196bib7) 2002; 2 Joo (nanoac1196bib16) 2019; 801 Ball (nanoac1196bib2) 1992; 355 Sagnes (nanoac1196bib1) 1993; 62 Jiang (nanoac1196bib18) 2006; 99 Chen (nanoac1196bib15) 2014; 25 Darbandi (nanoac1196bib6) 2005; 17 Leon (nanoac1196bib3) 1995; 267 Caldeira (nanoac1196bib4) 1981; 46 So (nanoac1196bib14) 2011; 109 Dong (nanoac1196bib23) 2019; 170 Kang (nanoac1196bib8) 2010; 40 Seifarth (nanoac1196bib17) 2001; 389 |
References_xml | – volume: 201 start-page: 1589 year: 2006 ident: nanoac1196bib20 article-title: The analysis of carbon bonding environment in HWCVD deposited a-SiC:H films by XPS and Raman spectroscopy publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2006.02.029 – volume: 78 start-page: 3058 year: 2001 ident: nanoac1196bib10 article-title: Si-rich/SiO2 nanostructured multilayers by reactive magnetron sputtering publication-title: Appl. Phys. Lett. doi: 10.1063/1.1371794 – volume: 115 start-page: 155704 year: 2014 ident: nanoac1196bib19 article-title: Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous si-rich silicon carbide films publication-title: J. Appl. Phys. doi: 10.1063/1.4871980 – volume: 355 start-page: 761 year: 1992 ident: nanoac1196bib2 article-title: Science at the atomic scale publication-title: Nature doi: 10.1038/355761a0 – volume: 62 start-page: 1155 year: 1993 ident: nanoac1196bib1 article-title: Optical absorption evidence of a quantum size effect in porous silicon publication-title: Appl. Phys. Lett. doi: 10.1063/1.108773 – volume: 28 start-page: 4912 year: 2016 ident: nanoac1196bib25 article-title: Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors publication-title: Adv. Mater. doi: 10.1002/adma.201506140 – volume: 170 start-page: 107587 year: 2019 ident: nanoac1196bib23 article-title: High-detectivity and-stability multilayer-graphene/Si-quantum-dot photodetectors with TiO x back-surface passivation layer publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2019.107587 – volume: 46 start-page: 211 year: 1981 ident: nanoac1196bib4 article-title: Influence of dissipation on quantum tunneling in macroscopic systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.46.211 – volume: 40 start-page: 661 year: 2010 ident: nanoac1196bib8 article-title: Cheminform abstract: water-soluble silicon quantum dots with wavelength-tunable photoluminescence publication-title: Chem. Inform. – volume: 109 start-page: 1046 year: 2011 ident: nanoac1196bib14 article-title: Size dependent optical properties of Si quantum dots in Si-rich nitride/Si3N4 superlattice synthesized by magnetron sputtering publication-title: J. Appl. Phys. doi: 10.1063/1.3561439 – volume: 97 start-page: 440 year: 2005 ident: nanoac1196bib21 article-title: Room temperature oxidation kinetics of Si nanoparticles in air, determined by x-ray photoelectron spectroscopy publication-title: J. Appl. Phys. doi: 10.1063/1.1835566 – volume: 99 start-page: 4006 year: 2006 ident: nanoac1196bib18 article-title: Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications publication-title: J. Appl. Phys. doi: 10.1063/1.2203394 – volume: 25 start-page: 5410 year: 2014 ident: nanoac1196bib15 article-title: Density improvement of Si quantum dots embedded in Si-rich silicon nitride films by light-filtering rapid thermal processing publication-title: J. Mater. Sci., Mater. Electron. doi: 10.1007/s10854-014-2321-4 – volume: 10 start-page: 1039 year: 2017 ident: nanoac1196bib24 article-title: Enhancement of efficiency and long-term stability in graphene/Si-quantum-dot heterojunction photodetectors by employing bis(trifluoromethanesulfonyl)-amide as a dopant for graphene publication-title: J. Mater. Chem. C doi: 10.1039/C7TC04647B – volume: 6 start-page: 228 year: 2013 ident: nanoac1196bib12 article-title: Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness publication-title: Frontiers Optoelectron. doi: 10.1007/s12200-013-0324-z – volume: 23 start-page: 065302 year: 2012 ident: nanoac1196bib11 article-title: Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure publication-title: Nanotechnology doi: 10.1088/0957-4484/23/6/065302 – volume: 801 start-page: 568 year: 2019 ident: nanoac1196bib16 article-title: Effect of auger recombination induced by donor and acceptor states on luminescence properties of silicon quantum dots/SiO2 multilayers publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.06.171 – volume: 267 start-page: 5206 year: 1995 ident: nanoac1196bib3 article-title: Spatially resolved visible luminescence of self-assembled semiconductor quantum dots publication-title: Science doi: 10.1126/science.267.5206.1966 – volume: 389 start-page: 108 year: 2001 ident: nanoac1196bib17 article-title: Phenomenological model of reactive r.f.-magnetron sputtering of Si in Ar/O2 atmosphere for the prediction of SiO x thin film stoichiometry from process parameters publication-title: Thin Solid Films doi: 10.1016/S0040-6090(01)00872-0 – volume: 17 start-page: 1867 year: 2006 ident: nanoac1196bib9 article-title: Comparison of InAs quantum dots grown on GaInAsP and InP publication-title: Nanotechnology doi: 10.1088/0957-4484/17/8/010 – volume: 96 start-page: 125419 year: 2010 ident: nanoac1196bib13 article-title: Effect of total pressure on the formation and size evolution of silicon quantum dots in silicon nitride films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3427386 – volume: 109 start-page: 5649 year: 1987 ident: nanoac1196bib5 article-title: Cheminform abstract: photochemistry of colloidal semiconductors: XX. Surface modification and stability of strong luminescing CdS particles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00253a015 – volume: 758 start-page: 32 year: 2018 ident: nanoac1196bib22 article-title: Self-powered Ag-nanowires-doped graphene/Si quantum dots/Si heterojunction photodetectors publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.05.126 – volume: 2 start-page: 803 year: 2002 ident: nanoac1196bib7 article-title: Efficient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents publication-title: Nano Lett. doi: 10.1021/nl025662w – volume: 17 start-page: 5720 year: 2005 ident: nanoac1196bib6 article-title: Single quantum dots in silica spheres by microemulsion synthesis publication-title: Chem. Mater. doi: 10.1021/cm051467h |
SSID | ssj0011821 |
Score | 2.360712 |
Snippet | Silicon quantum dots (Si-QDs) are excellent luminescent material due to its unique optoelectronic properties and have huge application potential in the field... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 415205 |
SubjectTerms | photodetector preparation Si-QDs |
Title | Preparation of Si quantum dots by phase transition with controlled annealing |
URI | https://iopscience.iop.org/article/10.1088/1361-6528/ac1196 https://www.proquest.com/docview/2549206954 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEB_8oNAeWrUtvn7IKnroIc_9TDb0VIoiIlZQwYOwbLK7WNTk1Zcc2r--s0meVC0i3nJYssnM7HxkfvMLwCYNAi0lYG0itEtkXrik0LlPQshS5SWPgPeItjhM907l_pk6m4Ovt7Mw9WRw_WO87ImCexEOgDi9zUTKklRxvW1LhgY0D4tCY-CM03s_jm5bCJg4s55oL0uwBpFDj_J_d7gTk-Zx3weOuYs2u2_gfPacPcjkctw2xbj8c4_C8ZkvsgSvhyyUfOuXLsOcr1bg1T_chCvwosOGltO3cHB043uG8LoidSDHP8mvFhXSXhMsaaek-E0mFxgMSRPjXgcBI_HzLhlg8FfeEYvu3MbJ93dwurtz8n0vGX7CkJRC8iYRechomcmghePC2oxyr2wuMDejgVmbuo4RRlFmC0mD5s4pZlmqqY1scUy8h4WqrvwqEE55yArrtPJYVmqbM8wGOZZQwZU-o3QEX2ZqMJOea8N0PXKtTZSVibIyvaxGsIViNcOBmz6ybuPOuspWtRHcSGZi6kKVmbgwgvWZug2ertgysZWv26mJ5TOnaa7khydu-BFe8gh76WCCn2ChuWn9Z8xbmmKts8-_3pHh4g |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL1qi0DtgkcBMTwNogsWmfEjTpwFC0QZtbQqI0Gl7owT26JqSaZNIlR-il_hk7hOMhUFhNh0wS4LK4l9bnzutY9PAJ5TLzBSPNYmQtkoznIb5SpzkfdpIl3Mg-A9qC32kq39-O2BPFiCb-dnYar5MPWP8bI3Cu6HcBDEqQkTCYsSydXEFAwDaDK3flBV7rizL1iz1S-3NxHgDc6nbz683oqG3wpEhYh5E4nMp7RIY6-E5cKYlHInTSYw26CeGZPYzuNEUmbymHrFrZXMsERRE_zPmMD7LsMVKZCrw4nBd7PzbQtM1llv7pdGWPfEw77on976Ag8uY19_I4OO4aY34PtibHphy9G4bfJx8fUX28j_aPBuwvUh2yav-te7BUuuXIe1nzwY1-Fqp4Et6tuwOzt1vRN6VZLKk_eH5KTFwGs_Eyzda5KfkfknJH3SBH7vpG4kLGOTQe5_7CwxSFsmnPC_A_uX0rG7sFJWpbsHhFPu09xYJR2Wz8pkDLNejqWit4VLKR3BiwX0et57iuhOC6CUDvjogI_u8RnBBkKph4ml_ku7ZxfalaastOA6ZjqkaFRqBHoETxchpnEWCVtDpnRVW-uwTMBpksn4_j8-8Alcm21O9e723s4DWOVB6dMpIx_CSnPaukeYqjX54-7zIPDxskPqB-W8PdY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Si+quantum+dots+by+phase+transition+with+controlled+annealing&rft.jtitle=Nanotechnology&rft.au=Fang%2C+Liyuan&rft.au=Tang%2C+Libin&rft.au=Teng%2C+Kar+Seng&rft.au=Xiang%2C+Jinzhong&rft.date=2021-10-08&rft.pub=IOP+Publishing&rft.issn=0957-4484&rft.eissn=1361-6528&rft.volume=32&rft.issue=41&rft_id=info:doi/10.1088%2F1361-6528%2Fac1196&rft.externalDocID=nanoac1196 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4484&client=summon |